×

Étude asymptotique de certains mouvements browniens complexes avec drift. (French) Zbl 0579.60077

We consider a process in the plane solution of the stochastic differential equation: \[ dX_ t=dB_ t+b(X_ t)dt \] where B denotes a two-dimensional Brownian motion and the function \(b:R^ 2\to R^ 2\) satisfies some integrability conditions which ensure that the process X is recurrent. Limit theorems are proved for the winding numbers of B around several points of the plane, which extend J. W. Pitman and M. Yor’s result in the case without drift [Bull. Am. Math. Soc., New Ser. 10, 109-111 (1984; Zbl 0535.60073) and ”Asymptotic laws of planar Brownian motion.” Ann. Probab., to appear]. Some limit theorems are also proved for the hitting times of small disks centered at distinct points of the plane, when the radius goes to 0. Similar results hold for Brownian motion with bounded drift on the sphere \(S^ 2\).

MSC:

60J60 Diffusion processes
60J65 Brownian motion
60G17 Sample path properties
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)

Citations:

Zbl 0535.60073
Full Text: DOI

References:

[1] Azema, J.; Duflo, M.; Revuz, D., Mesure invariante des processus de Markov récurrents. Séminaire de Probabilités III. Lect. Notes Math., 24-33 (1969), Berlin-Heidelberg-New York: Springer, Berlin-Heidelberg-New York · Zbl 0316.60049
[2] Burkholder, D., Distribution function inequalities for martingales, Ann. Probab., 1, 19-42 (1973) · Zbl 0301.60035
[3] Dambis, K., On the decomposition of continuous submartingales, Teor. Verojatn. Primen., 10, 438-448 (1965) · Zbl 0141.15102
[4] Dubins, L. E.; Schwartz, G., On continuous martingales, Proc. Natl. Acad. Sci. USA, 53, 913-916 (1965) · Zbl 0203.17504
[5] Durrett, R., A new proof of Spitzer’s result on the winding of two dimensional Brownian motion, Ann. Probab., 10, 244-246 (1982) · Zbl 0479.60081
[6] Friedman, A.; Pinsky, M. A., Asymptotic behavior of solutions of linear stochastic systems, Trans. Am. Math. Soc., 181, 1-22 (1973) · Zbl 0271.60060
[7] Friedman, A.; Pinsky, M. A., Asymptotic stability and spiraling properties for solutions of stochastic equations, Trans. Am. Math. Soc., 186, 331-358 (1973) · Zbl 0279.60046
[8] Harrison, J. M.; Shepp, L. A., On skew brownian motion, Ann. Probab., 9, 309-313 (1981) · Zbl 0462.60076
[9] Hashminskii, R. Z., Ergodic properties of recurrent diffusion processes and stabilization of the solution to the Cauchy problem for parabolic equations, Teor. Verojatnost Primen., 5, 196-214 (1960) · Zbl 0093.14902
[10] Ikeda, N.; Watanabe, S., Stochastic differential equations and diffusion processes (1981), Kodansha: North Holland Mathematical Library, Kodansha · Zbl 0495.60005
[11] Itô, K.; Mc Kean, H. P., Diffusion processes and their sample paths (1965), Berlin-Heidelberg-New York: Springer, Berlin-Heidelberg-New York · Zbl 0127.09503
[12] Kasahara, Y.; Kotani, S., On limit processes for a class of additive functionals of recurrent diffusion processes, Z. Wahrscheinlichkeitstheor. Verw. Geb., 49, 133-153 (1979) · Zbl 0435.60080
[13] Knight, F. B., A reduction of continuous square integrable martingales to Brownian motion. Lect. Notes Math. (1971), Berlin-Heidelberg-New York: Springer, Berlin-Heidelberg-New York
[14] Le Gal, J. F., One-dimensional stochastic differential equations involving the local times of the unknown process, Stochastic analysis. Lect. Notes Math., 51-82 (1984), Berlin-Heidelberg-New York-Tokyo: Springer, Berlin-Heidelberg-New York-Tokyo · Zbl 0551.60059
[15] Lyons, T.; Mc Kean, H. P., Windings of the plane Brownian motion, Adv. Math., 51, 212-225 (1984) · Zbl 0541.60075
[16] Messulam, P.; Yor, M., On D. Williams’ “pinching method” and some applications, J. Lond. Math. Soc., 26, 348-364 (1982) · Zbl 0518.60088
[17] Pitman, J. W.; Yor, M., The asymptotic joint distribution of windings of planar Brownian motion, Bull. Am. Math. Soc., 10, 109-111 (1984) · Zbl 0535.60073
[18] Pitman, J.W., Yor, M.: Asymptotic laws of planar Brownian motion. A paraître dans Annals of Probability (1985). Preprint University of California, Berkeley (1984) · Zbl 0607.60070
[19] Rosenkrantz, W., Limit theorems for solutions to a class of stochastic differential equations, Indiana Univ. Math. J., 24, 613-625 (1975) · Zbl 0278.60041
[20] Spitzer, F., Some theorems concerning two-dimensional Brownian motion, Trans. Am. Math. Soc., 87, 187-197 (1958) · Zbl 0089.13601
[21] Stroock, D. W.; Varadhan, S. R.S., Multidimensional diffusion processes (1979), Berlin-Heidelberg-New York: Springer, Berlin-Heidelberg-New York · Zbl 0426.60069
[22] Veretennikov, A. Y., On strong solutions of some stochastic equations, Russ. Math. Surv., 35, 5, 215-216 (1978) · Zbl 0415.60054
[23] Walsh, J. B., A diffusion with discontinuous local time, Astérisque, 52-53, 37-45 (1978)
[24] Watanabe, S.; Krishnaiah, P. R., A limit theorem for sums of i.i.d. random variables with slowly varying tail probability, Multivariate Analysis, 249-261 (1980), Amsterdam: North Holland, Amsterdam · Zbl 0434.60006
[25] Williams, D., A simple geometric proof of Spitzer’s winding number formula for two dimensional Brownian motion (1974), Swansea: University College, Swansea
[26] Yor, M.: Une décomposition asymptotique du nombre de tours du mouvement brownien complexe. Colloque en l’honneur de Laurent Schwartz (mai 1983). A paraître dans Astérisque (1985)
[27] Yor, M., Sur la continuité des temps locaux associés à certaines semi-martingales, Astérisque, 52-53, 23-35 (1978)
[28] Zvonkin, A. K., A transformation of the phase space of a process that removes the drift, Math. U.S.S.R. Sb, 22, 129-149 (1974) · Zbl 0306.60049
[29] Le Gall, J.F.: Sur la saucisse de Wiener et les points multiples du mouvement brownien. A paraître dans Ann. Probab. (1985)
[30] Jeulin, T., Application de la théorie du grossissement à l’étude des temps locaux Browniens. Lect. Notes Math. (1985), Berlin-Heidelberg-New York-Tokyo: Springer, Berlin-Heidelberg-New York-Tokyo · Zbl 0562.60080
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.