×

Sharp non-resonance conditions for periodically perturbed Liènard systems. (English) Zbl 0573.34034

In this paper we prove the existence of solutions to the periodic BVP on [0,p] \((p>0)\) for the second order vector differential equation of Liénard type in \({\mathbb{R}}^ m\) \(x''(t)+(d/dt)\phi (x(t))+Ag(t,x(t))=h(t)\) (t\(\in [0,p])\), with \(\phi:=\text{grad} F\), \(F\in C^ 2({\mathbb{R}}^ m,{\mathbb{R}})\), A an \(m\times m\) constant matrix, g: [0,p]\(\times {\mathbb{R}}^ m\to {\mathbb{R}}^ m\) satisfying the Carathéodory conditions and h: [0,p]\(\to {\mathbb{R}}^ m\) (Lebesgue) integrable. The main assumption is a sharp non-resonance condition on the nonlinear field g, with respect to the first two eigenvalues 0 and \(\omega^ 2=(2\pi /p)^ 2\) of the linear operator \((-d^ 2/dt^ 2)\) subjected to the periodic boundary conditions on [0,p]. Thus, a theorem by R. Reissig [Abh. Math. Semin. Univ. Hamb. 44, 45-51 (1975; Zbl 0323.34033)], concerning the scalar Liénard equation, is extended to the vector case and improved. Some kind of non-uniform non-resonance condition [see J. Mawhin and J. R. Ward, Arch. Math. 41, 337-351 (1983; Zbl 0537.34037)] is also considered. All the results also apply to the retarded Liénard equation \(x''(t)+(d/dt)\phi (x(t))+Ag(t,x(t- \tau))=h(t),\) with \(\tau\in [0,p[\).

MSC:

34C25 Periodic solutions to ordinary differential equations
34K99 Functional-differential equations (including equations with delayed, advanced or state-dependent argument)
Full Text: DOI

References:

[1] L. Amaral andM. P. Pera, A note on periodic solutions at resonance. Boll. Un. Mat. Ital. C(5)18, 107-117 (1981). · Zbl 0472.34028
[2] L. Cesari andR. Kannan, Solutions in the large of Liénard equations with forcing terms. Ann. Mat. Pura Appl. (4)111, 101-124 (1976). · Zbl 0429.34038 · doi:10.1007/BF02411813
[3] C. P. Gupta, On functional equations of Fredholm and Hammerstein type with applications to existence of periodic solutions of certain ordinary differential equations. J. Integral Equations (1)3, 21-42 (1981). · Zbl 0457.34040
[4] C. P. Gupta andJ. Mawhin, Asymptotic conditions at the two first eigenvalues for the periodic solutions of Liénard differential equations and an inequality of E. Schmidt. Z. Anal. Anwendungen (1)3, 33-42 (1984). · Zbl 0546.34031
[5] P. Habets andM. N. Nkashama, On periodic solutions of non-linear second order vector differential equations. Sém. Math. (Nouv. Sér.) Univ. Catholique Louvain68, IX-1-24 (1985).
[6] R. Iannacci andM. N. Nkashama, Periodic solutions for some forced second order Liénard and Duffing systems. Sém. Math. (Nouv. Sér.) Univ. Catholique Louvain30, XIV-1-11 (1983).
[7] S. Invernizzi andF. Zanolin, Periodic solutions of functional-differential systems with sublinear non-linearities. J. Math. Anal. Appl.101, 588-597 (1984). · Zbl 0557.34063 · doi:10.1016/0022-247X(84)90123-9
[8] M. A.Krasnosel’skii et al., Integral operators in spaces of summable functions. Leyden 1982.
[9] A. C. Lazer, On Schauder’s fixed point theorem and forced second order non-linear oscillations. J. Math. Anal. Appl.21, 421-425 (1968). · Zbl 0155.14001 · doi:10.1016/0022-247X(68)90225-4
[10] M. Martelli, On forced non-linear oscillations. J. Math. Anal. Appl.69, 496-504 (1979). · Zbl 0413.34040 · doi:10.1016/0022-247X(79)90161-6
[11] M. Martelli andJ. D. Schuur, Periodic solutions of Liénard type second-order ordinary differential equations. Tohoku Math. J.32, 201-207 (1980). · doi:10.2748/tmj/1178229636
[12] J. Mawhin, An extension of a theorem of A. C. Lazer on forced non-linear oscillations. J. Math. Anal. Appl.40, 20-29 (1972). · Zbl 0245.34035 · doi:10.1016/0022-247X(72)90025-X
[13] J. Mawhin, Boundary value problems at resonance for vector second order non-linear ordinary differential equations. Proc. Equadiff. IV, Prague 1977, LNM703, 241-249, Berlin-Heidelberg-New York 1979.
[14] J. Mawhin, Topological degree methods in non-linear boundary value problems. CBMS Conf. in Math.40, Amer. Math. Soc., Providence, R.I. 1979. · Zbl 0414.34025
[15] J. Mawhin andJ. R. Ward, Jr., Non-uniform non-resonance conditions at the two first eigenvalues for periodic solutions of forced Liénard and Duffing equations. Rocky Mountain J. Math. (4)12, 643-654 (1982). · Zbl 0536.34022 · doi:10.1216/RMJ-1982-12-4-643
[16] J. Mawhin andJ. R. Ward, Jr., Periodic solutions of some forced Liénard differential equations at resonance. Arch. Math.41, 337-351 (1983). · Zbl 0537.34037 · doi:10.1007/BF01371406
[17] J. Mawhin, Remarks on the preceding paper of Ahmad and Lazer on periodic solutions. Boll. Un. Mat. Ital. A(6)3, 229-238 (1984). · Zbl 0547.34032
[18] P. Omari andF. Zanolin, On forced non-linear oscillations inn-th order differential systems with geometric conditions. J. Non-linear Anal., TMA (7)8, 723-748 (1984). · Zbl 0542.34037 · doi:10.1016/0362-546X(84)90072-5
[19] P. Omari andF. Zanolin, Existence results for forced non-linear periodicBVPs at resonance. Ann. Mat. Pura Appl. (4)141, 127-157 (1985). · Zbl 0589.34005 · doi:10.1007/BF01763171
[20] P.Omari and F.Zanolin, Sharp non-resonance conditions for periodic boundary value problems. In: Non-linear oscillations for conservative systems (A. Ambrosetti ed.), 73-88, Bologna 1985.
[21] W. V. Petryshyn andS. Z. Yu, Periodic solutions of non-linear second-order differential equations which are not solvable for the highest derivative. J. Math. Anal. Appl.89, 462-488 (1982). · Zbl 0516.34019 · doi:10.1016/0022-247X(82)90113-5
[22] R. Reissig, Über einen allgemeinen Typ erzwungener nicht-linearer Schwingungen zweiter Ordnung. Rend. Accad. Naz. Lincei, Cl. Sci. fis. mat. natur. (8)56, 297-302 (1974). · Zbl 0317.34032
[23] R. Reissig, Extensions of some results concerning the generalized Liénard equation. Ann. Mat. Pura Appl. (4)104, 269-281 (1975). · Zbl 0313.34037 · doi:10.1007/BF02417019
[24] R. Reissig, Schwingungssätze für die verallgemeinerte Liénardsche Differentialgleichung. Abh. Math. Sem. Univ. Hamburg44, 45-51 (1975). · Zbl 0323.34033 · doi:10.1007/BF02992945
[25] R.Reissig, On a general type of second-order forced non-linear oscillations. In: Dynamical Systems, an International Symposium, (Vol. II) (Cesari, Hale and LaSalle eds.), 223-226, New York 1976. · Zbl 0342.34024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.