×

On the principal eigenvalue of a periodic-parabolic operator. (English) Zbl 0563.35033

Let \(\Omega \subset {\mathbb{R}}^ N\) be a bounded domain, and let \(L:=\partial /\partial t+A(x,t,D)\) be a uniformly parabolic differential expression which is T-periodic in t. The authors study the eigenvalue problem (*) \(Lu=\lambda mu\) in a space of Hölder continuous T-periodic functions on \({\bar \Omega}\times {\mathbb{R}}\), where \(m\neq 0\) is a (not necessarily positive) weight function.
Main result: (*) has a positive eigenvalue \(\lambda_ 1(m)\) having a positive eigenfunction u if and only if \(\int^{T}_{0}(\max_{x}m(x,t))dt\) is positive. The result generalizes previous results for (a) \(m=1\), (b) elliptic eigenvalue problems with indefinite weight functions.
Reviewer: J.Voigt

MSC:

35K10 Second-order parabolic equations
47F05 General theory of partial differential operators
35P05 General topics in linear spectral theory for PDEs
Full Text: DOI

References:

[1] Amann H., In:Nonlinear Analysis pp 1– (1978)
[2] Castro A., Boil.U.M.I 1 (6) pp 1089– (1982)
[3] Crandall M.G., Arch.Rat.Mech.Anal 52 (6) pp 161– (1973)
[4] Hess P., In:Dynamical Systems II pp 103– (1982)
[5] Hess P., Comm.P.D.E 5 pp 999– (1980) · Zbl 0477.35075 · doi:10.1080/03605308008820162
[6] Kato T., Math,Z 180 pp 265– (1982) · Zbl 0471.46012 · doi:10.1007/BF01318910
[7] Krein M.G., Amer.Math.Soc.Transl 10 pp 199– (1962)
[8] Lazer A.C., In:Dynamical Systems II pp 227– (1982)
[9] Protter M.H., Maximum Principles in Differential Equations (1967) · Zbl 0153.13602
[10] Tanabe H., Equations of Evolution (1979) · Zbl 0417.35003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.