×

Polynomial algebras over the Steenrod algebra. Variations on a theorem of Adams and Wilkerson. (English) Zbl 0545.55009

J. F. Adams and C. W. Wilkerson [Ann. Math., II. Ser. 111, 95-143 (1980; Zbl 0417.55018)] prove that if p is an odd prime, \(\deg x_ i=2d_ i, p\nmid d_ 1...d_ n\) and \({\mathbb{Z}}/p[x_ 1,...,x_ n]\) is an unstable algebra over the Steenrod algebra then this algebra must be isomorphic to \(H^*(BT^ n;{\mathbb{Z}}/p)^ G\) for some p-adic generalized reflection group G. Smith and Switzer present a major simplification of the proof of this theorem. In their poof the use of the theory of algebraic closures is replaced by the use of the following theorem of C. W. Wilkerson [J. Pure Appl. Algebra 13, 49-55 (1978; Zbl 0426.55014)]: if \(H^*(BT^ n;{\mathbb{Z}}/p)<B^*\) is an integral extension in the category of unstable integral domains over the algebra of Steenrod reduced powers then \(H^*(BT^ n;{\mathbb{Z}}/p)=B^*.\)
Reviewer: S.O.Kochman

MSC:

55P45 \(H\)-spaces and duals
55S10 Steenrod algebra
Full Text: DOI

References:

[1] Lang, Algebra (1965)
[2] Clark, Pacific J. Math. 50 pp 425– (1974) · Zbl 0333.55002 · doi:10.2140/pjm.1974.50.425
[3] DOI: 10.2307/1970508 · Zbl 0121.39803 · doi:10.2307/1970508
[4] DOI: 10.1016/0040-9383(65)90006-6 · Zbl 0136.27402 · doi:10.1016/0040-9383(65)90006-6
[5] DOI: 10.1016/0022-4049(78)90042-7 · Zbl 0426.55014 · doi:10.1016/0022-4049(78)90042-7
[6] DOI: 10.1016/0040-9383(77)90003-9 · Zbl 0404.55019 · doi:10.1016/0040-9383(77)90003-9
[7] Shephard, Canadian J. Math. 6 pp 274– (1954) · Zbl 0055.14305 · doi:10.4153/CJM-1954-028-3
[8] DOI: 10.2307/1971218 · Zbl 0404.55020 · doi:10.2307/1971218
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.