×

Linear stability and stable modes of geostrophic fronts. (English) Zbl 0538.76050

(Author’s summary.) A Rayleigh integral is used to prove that an unbounded geostrophic front of uniform potential vorticity is stable with respect to small perturbations of arbitrary wavelength. The ageostrophic theory developed in this study yields a stable, near-inertial, long trapped mode. Recent oceanic observations of the increase in the energy of the inertial peak in the vicinity of fronts supports the existence of this inertial trapped mode. In addition the theory yields a geostrophic mode which is expected to become unstable when the potential vorticity is not uniform.
Reviewer: H.S.Takhar

MSC:

76E20 Stability and instability of geophysical and astrophysical flows
86A05 Hydrology, hydrography, oceanography
Full Text: DOI

References:

[1] Bender M. L., Advanced Mathematical Methods for Scientists and Engineers (1978) · Zbl 0417.34001
[2] Cheney R. E., J. Geophys. Res 86 pp 473– (1981) · doi:10.1029/JC086iC01p00473
[3] Day C. G., Deep-Sea Res 12 pp 805– (1965)
[4] Fu L. L., Rev. Geophys. Space Phys 19 pp 141– (1981) · doi:10.1029/RG019i001p00141
[5] Gonella J., Deep-Sea Res 18 pp 775– (1971)
[6] Griffiths R. W., J. Fluid Mech pp 343– (1982) · Zbl 0487.76052 · doi:10.1017/S0022112082001669
[7] Legeckis R., J. Geophys. Res 83 pp 4501– (1978) · doi:10.1029/JC083iC09p04501
[8] Kundu P. K., J. Phys. Oceanaogr 6 pp 879– (1976) · doi:10.1175/1520-0485(1976)006<0879:AAOIOO>2.0.CO;2
[9] Kunze E., Trans. Am. Geophys. Union 62 (45) pp 914– (1981)
[10] Lai D. Y., J. Phys. Oceanogr 7 (5) pp 670– (1979) · doi:10.1175/1520-0485(1977)007<0670:DAMOGS>2.0.CO;2
[11] Luyten J. R., J. Phys. Oceanaogr 4 pp 256– (1974) · doi:10.1175/1520-0485(1974)004<0256:TGSMPI>2.0.CO;2
[12] Mayer D. A., J. Geophys. Res 84 pp 1776– (1979) · doi:10.1029/JC084iC04p01776
[13] McClimans T. A., ”Fronts in the atmosphere and oceans,” (1979)
[14] Mooers C. N. K., Geophys. Fluid Dyn 6 pp 245– (1975) · doi:10.1080/03091927509365797
[15] Munk W., Rev. Geophys 6 (4) pp 447– (1968) · doi:10.1029/RG006i004p00447
[16] Orlanski I., J. Atmos. Sci 25 pp 178– (1968) · doi:10.1175/1520-0469(1968)025<0178:IOFW>2.0.CO;2
[17] Paldor N., Ph.D. disertation–, in: ”Stable and unstable modes of surface fronts,” (1982)
[18] Pedlosky J., J. Atmos. Sci 21 pp 201– (1964) · doi:10.1175/1520-0469(1964)021<0201:TSOCIT>2.0.CO;2
[19] Perkins H., Deep-Sea Res 19 pp 289– (1972)
[20] Pollard R. T., Deep-Sea Res 17 pp 795– (1970)
[21] Pollard R. T., Deep-Sea Res 17 pp 813– (1970)
[22] Stern M. E., J. Mm. Res. 35 (3) pp 479– (1977)
[23] Stern M. E., J. Fluid Mech. (1982)
[24] Stommel, H. 1966.The Gulf Stream., Second Edition, 248Cambridge University Press.
[25] Watts R. D., J. Geophys. Res 87 pp 9467– (1983) · doi:10.1029/JC087iC12p09467
[26] Webster F., Rev. Geophys. 6 (4) pp 473– (1968) · doi:10.1029/RG006i004p00473
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.