×

Deterministic and stochastic optimization problems of Bolza type in discrete time. (English) Zbl 0534.49022

Problems of the type: Minimize \[ I(x)=\ell(x(t_ 0),x(t_ 1))+\int^{t_ 1}_{t_ 0}L(t,x(t),\dot x(t))dt \] over a space of arcs \(x:[t_ 0,t_ 1]\to R^ n\) subject to a system of equations and inequality constraints on the endpoint pair \((x(t_ 0),x(t_ 1))\) and the triple \((t,x(t),\dot x(t))\) are known as the problems of Bolza type. In the paper, the authors deal with discrete-time analogues of these optimization problems considering first the deterministic case and further the stochastic one. They assume the functional to be convex but differentiability assumptions are omitted.
Necessary and sufficient conditions for the optimal solutions are given in the deterministic part. These results are used for the stochastic version.
In the stochastic part, it is assumed that decisions made at any time can only depend on the information collected about past random events, the future being known only in a probabilistic sense. Further, the necessary and sufficient conditions of optimal solutions are given, too. At the end the dual stochastic problem is discussed.
All assertions presented in the paper are very carefully proved using results of convex analysis.
Reviewer: V.Kankova

MSC:

49K99 Optimality conditions
49K45 Optimality conditions for problems involving randomness
93C55 Discrete-time control/observation systems
93E20 Optimal stochastic control
26B25 Convexity of real functions of several variables, generalizations
Full Text: DOI

References:

[1] Bertsekas D., Stochastic Optimal Control: The Discrete Case (1978) · Zbl 0471.93002
[2] Clarke F. H., J. Diff. Equations 19 pp 80– (1975) · Zbl 0323.49021 · doi:10.1016/0022-0396(75)90020-0
[3] Davis M. H. A., Some current issues in stochastic control
[4] Dynkin E., Mat Sb 87 pp 490– (1972)
[5] Eisner M. J., SI AM J. Appl. Math 28 pp 779– (1975) · Zbl 0297.90061 · doi:10.1137/0128064
[6] Eisner, M. J. and Olsen, P. 1980.Duality in probabilistic programming, in Stochastic Programming, Edited by: Dempster, M. 147–158. London: Academic Press. · Zbl 0472.90041
[7] Evstigneev I., Math. Operations Research 1 pp 267– (1976) · Zbl 0373.90086 · doi:10.1287/moor.1.3.267
[8] Evstigneev I., in Warsaw Fall Seminars in Mathematical Economics 133 pp 34– (1976) · doi:10.1007/978-3-642-48296-0_4
[9] Hiriart-Urruty J.B., SIAM J. Control Optimization 16 pp 317– (1978) · Zbl 0382.62072 · doi:10.1137/0316020
[10] Rockafellar R. T., Convex Analysis (1970) · Zbl 0193.18401
[11] Rockafellar R. T., II, Pacific J. Math 39 pp 439– (1971) · Zbl 0236.46031 · doi:10.2140/pjm.1971.39.439
[12] Rockafellar R. T., Nonlinear Operators and Calculus of Variations 543 (1977)
[13] Rockafellar, R. T. 1978.Duality in optimal control, in Mathematical Control Theory, Edited by: Coppel, W.A. Vol. 680, 219–257. Springer-Verlag. · Zbl 0385.49001 · doi:10.1007/BFb0065318
[14] Rockafellar R. T., basic duality, Pacific J. Math 62 pp 173– (1976) · doi:10.2140/pjm.1976.62.173
[15] Rockafellar R. T., Mathematical Programming Study 6 pp 170– (1976) · Zbl 0402.90076 · doi:10.1007/BFb0120750
[16] Rockafellar R. T., SIAM J. Control Optimization 16 pp 16– (1978) · Zbl 0397.90078 · doi:10.1137/0316002
[17] Yosida K., Trans. Amer. Math. Soc 72 pp 46– (1952) · doi:10.1090/S0002-9947-1952-0045194-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.