×

Representation groups for semiunitary projective representations of finite groups. (English) Zbl 0439.20006


MSC:

20C25 Projective representations and multipliers
20C35 Applications of group representations to physics and other areas of science
22E47 Representations of Lie and real algebraic groups: algebraic methods (Verma modules, etc.)

Citations:

Zbl 0304.22010
Full Text: DOI

References:

[1] M. Santander, ”Linealización de representaciones proyectivas semiunitarias de grupos,” Universidad de Valladolid, 1977.
[2] J. F. Cariñena and M. Santander, J. Math. Phys. 16, 1416 (1975).JMAPAQ0022-2488
[3] E. P. Wigner, Ann. Math. 40, 149 (1939); ANMAAH0003-486X
[4] also U. Ulhorn, Ark. Fysik 23, 307 (1962); AFYSA70365-2440
[5] V. Bargmann, J. Math. Phys. 5, 862 (1964).JMAPAQ0022-2488
[6] V. S. Varadarajan, Geometry of Quantum Theory (Van Nostrand, New York, 1968, 1970), Vols. I and II. · Zbl 0155.56802
[7] W. G. Harter, J. Math. Phys. 10, 739 (1969).JMAPAQ0022-2488
[8] I. M. Isaacs, Character Theory of Finite Groups (Academic, New York, 1976), pp. 176–7.
[9] For the more general case of Polish G and semiunitary representations, see, e.g., U. Cattaneo, Rep. Math. Phys. 9, 31 (1976) and references therein for the previous work; for finite G the results of this paper, of course, hold with some evident simplifications.RMHPBE0034-4877
[10] J. Schur, J. Reine Angew. Math. 127, 20 (1904); JRMAA80075-4102
[11] J. Schur, 132, 85 (1907); JRMAA80075-4102, J. Reine Angew. Math.
[12] J. Schur, 139, 155 (1911).JRMAA80075-4102, J. Reine Angew. Math.
[13] T. Janssen, J. Math. Phys. 13, 342 (1972).JMAPAQ0022-2488
[14] See, e.g., N. B. Backhouse, Physica 70, 505 (1970) and references therein; PHYSAG0031-8914
[15] also J. M. Levy-Leblond, ”Galilei Group and Galilean invariance,” in Group Theory and Its Applications, edited by E. Loebl (Academic, New York, 1971), Vol. II, and references therein.
[16] See, e.g., U. Cattaneo and A. Janner, J. Math. Phys. 15, 1155 (1974), and references therein. This paper deals with a more general case than finite groups.JMAPAQ0022-2488
[17] C. C. Moore, Trans. Am. Math. Soc. 113, 40, 64 (1964).TAMTAM0002-9947
[18] U. Cattaneo, J. Math. Phys. 19, 452 (1978).JMAPAQ0022-2488
[19] V. Bargmann, Ann. Math. 59, 1 (1954).ANMAAH0003-486X · Zbl 0055.10304 · doi:10.2307/1969831
[20] G. W. Mackey, Acta Math. 99, 265 (1968), Theorem 4.2.ACMAA80001-5962
[21] S. MacLane, Homology (Springer, Berlin, 1967).
[22] E. P. Wigner, Group Theory and Its Applications (Academic, New York, 1971), Sec. 26. Also L. Janssen and M. Boon, Theory of Finite Groups. Applications in Physics (North-Holland, Amsterdam, 1967);
[23] R. Shaw and J. Lever, Commun. Math. Phys. 38, 257 (1974).CMPHAY0010-3616
[24] J. O. Dimmock, J. Math. Phys. 4, 1307 (1963).JMAPAQ0022-2488
[25] U. Cattaneo, J. Math. Phys. 19, 767 (1978), Appendix B.JMAPAQ0022-2488
[26] J. Schur, J. Reine Angew. Math. 127, 20 (1904), Satz IV.JRMAA80075-4102
[27] See, e.g., Ref. 7, Lemma 3.
[28] L. Michel, ”Invariance in Q. M. and group extensions,” in Istanbul Lectures, 1962, edited by F. Gursey (Gordon & Breach, New York, 1964); · doi:10.1088/0305-4470/10/5/019
[29] C. J. Bradley and D. E. Wallis, Q. J. Math. (Oxford) 25, 85 (1974); · doi:10.1088/0305-4470/10/5/019
[30] P. Rudra, J. Math. Phys. 17, 509, 512 (1976); JMAPAQ0022-2488 · doi:10.1088/0305-4470/10/5/019
[31] P. M. Van den Broek, J. Phys. A. Math. Gen. 10, 649 (1977) and references therein. · doi:10.1088/0305-4470/10/5/019
[32] H. Bacry and J. M. Levy-Leblond, J. Math. Phys. 9, 1605 (1968).JMAPAQ0022-2488
[33] L. Michel, Ref. 21, p. 169.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.