×

A unified approach to the solution of certain classes of nonlinear boundary value problems using monotone iterations. (English) Zbl 0413.35036


MSC:

35J65 Nonlinear boundary value problems for linear elliptic equations
35A35 Theoretical approximation in context of PDEs
35Q99 Partial differential equations of mathematical physics and other areas of application
Full Text: DOI

References:

[1] Cohen, D. S., Positive solutions of a class of nonlinear eigenvalue problems, J. Math. Mech., 17, 209-215 (1967) · Zbl 0154.12701
[2] Keller, H. B.; Cohen, D. S., Some positone problems suggested by nonlinear heat generation, J. Math. Mech., 16, 1361-1376 (1967) · Zbl 0152.10401
[3] Schryer, N. L., Newton’s method for convex nonlinear elliptic boundary value problems, Numer. Math., 17, 284-300 (1971) · Zbl 0223.65075
[4] Shampine, L. F., Some nonlinear eigenvalue problems, J. Math. Mech., 17, 1067-1072 (1968) · Zbl 0157.18602
[5] Amann, H., Supersolutions, monotone iterations, and stability, J. diff. Eqs., 21, 363-377 (1976) · Zbl 0319.35039
[6] Meyer-Spasche R., Newton’s method in mildly nonlinear Dirichlet problems with several solutions (to appear).; Meyer-Spasche R., Newton’s method in mildly nonlinear Dirichlet problems with several solutions (to appear). · Zbl 0336.65046
[7] Mooney, J. W., Monotone methods for the Thomas-Fermi equation, Q. appl. Math., 36, 305-314 (1978) · Zbl 0391.34008
[8] Mooney, J. W.; Roach, G. F., Iterative bounds for the stable solutions of convex non-linear boundary value problems, Proc. R. Soc. Edin., 76, A, 81-94 (1976) · Zbl 0343.35034
[9] Meyer-Spasche, R., Numerical treatment of Dirichlet problems with several solutions, I.S.N.M., 31 (1976) · Zbl 0336.65046
[10] Bailey, P. B.; Shampine, L. F.; Waltman, P. E., Nonlinear Two Point Boundary Value Problems (1968), Academic Press: Academic Press New York · Zbl 0169.10502
[11] Collatz, L., Functional Analysis and Numerical Mathematics (1966), Academic Press: Academic Press New York · Zbl 0221.65088
[12] Bellman, R. E.; Kalaba, R., Quasilinearisation and Nonlinear Boundary Value Problems (1965), American Elsevier Co: American Elsevier Co New York · Zbl 0139.10702
[13] Kalaba, R., On nonlinear differential equations, the maximum operation, and monotone convergence, J. Math. Mech., 8, 519-574 (1959) · Zbl 0092.07703
[14] Keener, J. P.; Keller, H. B., Positive solutions of convex nonlinear eigenvalue problems, J. Diff. Eqs., 16, 103-125 (1974) · Zbl 0287.35074
[15] Laetsch, T., Asymptotic branch points and multiple positive solutions of nonlinear integral equations, S.I.A.M.J. Math. Analysis, 6, 178-191 (1975) · Zbl 0275.45010
[16] Sattinger, D. H., Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math. J., 21, 979-1000 (1972) · Zbl 0223.35038
[17] Keller, H. B., Elliptic boundary value problems suggested by non-linear diffusion processes, Arch. ration. Mech. Analysis, 35, 363-381 (1969) · Zbl 0188.17102
[18] Keller, H. B., Positive solutions of some nonlinear eigenvalue problems, J. Math. Mech., 19, 279-295 (1969) · Zbl 0188.17103
[19] Collatz, L., Monotonicity with discontinuities in partial differential equations, (Proc. Conf. Ordinary and Partial Diff. Eqns. Proc. Conf. Ordinary and Partial Diff. Eqns, Lecture Notes 415 (1974), Springer-Verlag) · Zbl 0302.35075
[20] Collatz, L., Applications of functional analysis, (Rall, L., Nonlinear Functional Analysis and Applications (1971), Academic Press: Academic Press New York) · Zbl 0227.45008
[21] Ostrowski, A. M., Solution of Equations in Euclidean and Banach Spaces (1973), Academic Press: Academic Press New York · Zbl 0304.65002
[22] Ortega, J. M.; Rheinboldt, W. C., Iterative Solution of Nonlinear Equations in Several Variables (1970), Academic Press: Academic Press New York · Zbl 0241.65046
[23] Stakgold, I., Braching of solutions of nonlinear equations, Siam Rev., 13, 289-332 (1971) · Zbl 0199.20503
[24] Luning, C. D.; Perry, W. L., An iterative technique for solution of the Thomas-Fermi equation utilising a nonlinear eigenvalue problem, Q. appl. Math., 35, 257-268 (1977) · Zbl 0363.34014
[25] Protter, M. H.; Weinberger, H. F., Maximum Principles in Differential Equations (1967), Prentice-Hall: Prentice-Hall Englewood Cliffs · Zbl 0153.13602
[26] Aronszajn, N.; Smith, K., Characterisation of positive reproducing kernels. Applications to Green’s functions, Am. J. Math., 79, 611-622 (1957) · Zbl 0079.13603
[27] Bellman, R. E., On the non-negativity of Green’s function, Boll. d’Unione Mate, 12, 411-413 (1957) · Zbl 0085.31202
[28] Amann, H., Existence of multiple solutions for nonlinear elliptic boundary value problems, Indiana Univ. Math. J., 21, 925-935 (1972) · Zbl 0222.35023
[29] Joseph, D. D.; Lundgren, T. S., Quasilinear Dirichlet problems driven by positive sources, Arch. ration. Mech. Analysis, 49, 295-381 (1973) · Zbl 0266.34021
[30] Gelfand, I. M., Some problems in the theory of quasilinear equations, Am. Math. Soc. Transl., 29, 295-381 (1963) · Zbl 0127.04901
[31] Fujita, H., On the nonlinear equations \(Δu + e^u = 0\) and \(∂υ∂t = Δυ + \(e^υ\), Bull. Am. Math. Soc., 75, 132-135 (1969) · Zbl 0216.12101
[32] Sattinger, D. H., Topics in stability and bifurcation theory, (Lecture Notes, 309 (1973), Springer-Verlag) · Zbl 0466.58016
[33] Laetsch, T., A note on a paper of Keller and Cohen, J. Math. Mech., 18, 1095-1100 (1969) · Zbl 0187.04204
[34] Courant, R.; Hilbert, D., Methods of Mathematical Physics, II (1962), Interscience: Interscience New York · Zbl 0729.35001
[35] Mooney J.W., Numerical treatment of nonlinear boundary value problems using Picard and Newton methods (to appear).; Mooney J.W., Numerical treatment of nonlinear boundary value problems using Picard and Newton methods (to appear).
[36] Aris, R., Mathematical Theory of Diffusion and Reaction, Vol. II (1975), Clarendon: Clarendon Oxford · Zbl 0307.92004
[37] Krasnosel’skii, M. A., Positive Solutions of Operator Equations (1964), P. Noordhoff Ltd: P. Noordhoff Ltd Groningen · Zbl 0121.10604
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.