×

Über die Anzahl der Primfaktoren algebraischer Zahlen und das Gaußsche Fehlergesetz. (German) Zbl 0286.12002

Let \(x\) be an arbitrary positive number, \(K\) an algebraic number field of degree \(n\), \(\mathfrak f\) an integral ideal in \(K\) of norm \(N\mathfrak f\), \(A\{\mathfrak p: \ldots\}\) the number of prime ideals \(\mathfrak p\) of \(K\) with \(\ldots\), \(\xi\) an integer in \(K\) of norm \(N\xi\), \(\xi^j\) \((j = 1,2, \ldots, n)\) the conjugates of \(\xi\), \(A\{\xi: \ldots\}\) the number of the integers \(\xi\) of \(K\) with \(\ldots\); \(\vert \xi\vert < x^{1/n}\) denotes the system \(\vert \xi^j\vert \le x^{1/n}\) \((j = 1,2, \ldots, n)\), \(c_1, c_2, \ldots\) are positive constants dependent on \(K\). Further, let \(\displaystyle{\sum_\xi}'\) mean \(\displaystyle\sum_{\xi\ne 0}\); \(v(\xi) = A\{\mathfrak p: \mathfrak p\mid \xi\}\). The author proves a number of theorems, some of which are mentioned below.
Theorem 1: \(x, \alpha, \beta\) are arbitrary real numbers with \(x > c_3\) and \(\alpha<\beta\). Let \(\mathfrak f\) be an integral ideal of \(K\) with \(N\mathfrak f < e^{(\log \log x)^2}\), \(\gamma\) an integer of \(K\), and \(\mu = \max(x, \vert\alpha\vert, \vert\beta\vert)\). Then for \(z = x\) and \(z= \vert N\xi\vert\) \((z > e)\), one has the formula \[ \begin{gathered} A\{\xi: \xi \equiv\gamma\bmod \mathfrak f, \vert \xi\vert < x^{1/n}, \log \log z + \alpha(\log \log z)^{1/2} < v(\xi)< \log \log z + \beta(\log \log z)^{1/2}= \\ \frac{c_1x}{(2\pi)^{1/2}\cdot N\mathfrak f} \int_\alpha^\beta e^{-u^2/2}\,du + O\left(\frac{\mu^4 x(\log \log \log x)^{1/2}} {N\mathfrak f \cdot (\log \log x)^{1/4}}\right). \end{gathered} \]
Theorem 3 and Theorem 5: For each real number \(x\ge 3\), each integral ideal \(\mathfrak f\) of \(K\) with \(N\mathfrak f\le x\) and each integer \(\gamma\) of \(K\), \[ {\sum_{\substack{\vert \xi\vert < x^{1/n} \\ \equiv \gamma\bmod\mathfrak f}}}' v(\xi) = \\ \frac{c_1x}{ N\mathfrak f} \log \log x + O\left(\frac{x}{N\mathfrak f}\log N\mathfrak f\right) + O\left(\frac{x}{\log x}N\mathfrak f^{1/n-1}\right), \] Finally, the function \(f(x)>0\) tends monotonically to infinity. \[ \begin{split} {\sum_{\substack{\vert \xi\vert < x^{1/n} \\ \equiv \gamma\mod\mathfrak f}}}' v^2(\xi) = \frac{c_1x}{ N\mathfrak f} (\log \log x)^2 + O\left(\frac{x}{N\mathfrak f} \log N\mathfrak f\cdot \log \log x \right) + \\ O\left(\frac{x}{N\mathfrak f} \log^2 N\mathfrak f\right) + O\left(xN\mathfrak f^{1/n - 1} \frac{\log\log x}{\log x}\right). \end{split} \]
Theorem 6: \[ A\{\xi: \vert \xi\vert < x^{1/n}, \vert v(\xi) - \log\log x\vert> (\log\log x)^{1/n} f(x)\} = O\left(\frac{x}{f^2(x)}\right). \]
Reviewer: B. K. Ghosh

MSC:

11R47 Other analytic theory
11N05 Distribution of primes
11K99 Probabilistic theory: distribution modulo \(1\); metric theory of algorithms
Full Text: DOI

References:

[1] Erdös, J. London Math. Soc. 12 pp 308– (1937)
[2] Leveque, Trans. Amer. Math. Soc. 66 pp 440– (1949)
[3] Rieger, J. reine angew. Math. 208 pp 79– (1961)
[4] Tanaka, Jap. J. Math. 25 pp 1– (1955)
[5] J. Math. Soc. Japan 9 pp 171– (1957)
[6] Jap. J. Math. 27 pp 103– (1957)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.