login
Search: a365481 -id:a365481
     Sort: relevance | references | number | modified | created      Format: long | short | data
The sum of unitary divisors of the smallest exponentially odd number that is divisible by n.
+10
4
1, 3, 4, 9, 6, 12, 8, 9, 28, 18, 12, 36, 14, 24, 24, 33, 18, 84, 20, 54, 32, 36, 24, 36, 126, 42, 28, 72, 30, 72, 32, 33, 48, 54, 48, 252, 38, 60, 56, 54, 42, 96, 44, 108, 168, 72, 48, 132, 344, 378, 72, 126, 54, 84, 72, 72, 80, 90, 60, 216, 62, 96, 224, 129, 84
OFFSET
1,2
COMMENTS
The number of unitary divisors of the smallest exponentially odd number that is divisible by n is the same as the number of unitary divisors of n, A034444(n).
FORMULA
a(n) = A034448(A356191(n)).
Multiplicative with a(p^e) = p^(e + 1 - (e mod 2)) + 1.
Dirichlet g.f.: zeta(s) * zeta(2*s-2) * Product_{p prime} (1 + 1/p^(s-1) + 1/p^(2*s-3) - 1/p^(2*s-2) - 1/p^(2*s-1) - 1/p^(3*s-3)).
From Vaclav Kotesovec, Sep 05 2023: (Start)
Dirichlet g.f.: zeta(s) * zeta(s-1) * zeta(2*s-2) * zeta(2*s-3) * Product_{p prime} (1 - p^(7-6*s) - p^(5-5*s) + p^(7-5*s) + 2*p^(4-4*s) + 2*p^(5-4*s) - p^(6-4*s) + p^(2-3*s) - p^(4-3*s) - p^(1-2*s) - 2*p^(2-2*s)).
Let f(s) = Product_{p prime} (1 - p^(7-6*s) - p^(5-5*s) + p^(7-5*s) + 2*p^(4-4*s) + 2*p^(5-4*s) - p^(6-4*s) + p^(2-3*s) - p^(4-3*s) - p^(1-2*s) - 2*p^(2-2*s)).
Sum_{k=1..n} a(k) ~ n^2 * Pi^4 * f(2) / 144 * (log(n) + 3*gamma - 1/2 + 18*zeta'(2)/Pi^2 + f'(2)/f(2)), where
f(2) = Product_{p prime} (1 - 4/p^2 + 2/p^3 + 3/p^4 - 2/p^5) = 0.17432153313226756485612314112586411632220602294650993976966957787608316...,
f'(2) = f(2) * Sum_{p prime} 11 * log(p) / (p^2 + p - 2) = f(2) * 5.12969275236278527949034734003948649118572887258486718244613616120875581...
and gamma is the Euler-Mascheroni constant A001620. (End)
MATHEMATICA
f[p_, e_] := p^(e + 1 - Mod[e, 2]) + 1; a[n_] := Times @@ f @@@ FactorInteger[n]; a[1] = 1; Array[a, 100]
PROG
(PARI) a(n) = {my(f = factor(n)); prod(i=1, #f~, f[i, 1]^(f[i, 2] + 1 - f[i, 2]%2) + 1); }
KEYWORD
nonn,easy,mult
AUTHOR
Amiram Eldar, Sep 05 2023
STATUS
approved
The sum of unitary divisors of the smallest square divisible by n.
+10
3
1, 5, 10, 5, 26, 50, 50, 17, 10, 130, 122, 50, 170, 250, 260, 17, 290, 50, 362, 130, 500, 610, 530, 170, 26, 850, 82, 250, 842, 1300, 962, 65, 1220, 1450, 1300, 50, 1370, 1810, 1700, 442, 1682, 2500, 1850, 610, 260, 2650, 2210, 170, 50, 130, 2900, 850, 2810, 410
OFFSET
1,2
COMMENTS
The number of unitary divisors of the smallest square divisible by n is the same as the number of unitary divisors of n, A034444(n).
LINKS
FORMULA
a(n) = A034448(A053143(n)).
Multiplicative with a(p^e) = p^(e + (e mod 2)) + 1.
Dirichlet g.f.: zeta(s) * zeta(2*s-2) * Product_{p prime} (1 + 1/p^(s-2) - 1/p^(2*s-2) - 1/p^(3*s-2)).
Sum_{k=1..n} a(k) ~ c * n^3, where c = (Pi^2/45) * zeta(3) * Product_{p prime} (1 - 1/p^4 + 1/p^5 - 1/p^6) = 0.248414056414... .
MATHEMATICA
f[p_, e_] := 1 + p^(e + Mod[e, 2]); a[n_] := Times @@ f @@@ FactorInteger[n]; a[1] = 1; Array[a, 100]
PROG
(PARI) a(n) = {my(f = factor(n)); prod(i=1, #f~, f[i, 1]^(f[i, 2] + f[i, 2]%2) + 1); }
(Python)
from math import prod
from sympy import factorint
def A365479(n): return prod(p**(e+(e&1))+1 for p, e in factorint(n).items()) # Chai Wah Wu, Sep 05 2023
KEYWORD
nonn,easy,mult
AUTHOR
Amiram Eldar, Sep 05 2023
STATUS
approved

Search completed in 0.005 seconds