login
Search: a232473 -id:a232473
     Sort: relevance | references | number | modified | created      Format: long | short | data
2-Fubini numbers.
+10
10
2, 10, 62, 466, 4142, 42610, 498542, 6541426, 95160302, 1520385010, 26468935022, 498766780786, 10114484622062, 219641848007410, 5085371491003502, 125055112347154546, 3255163896227709422, 89416052656071565810, 2584886208925055791982, 78447137202259689678706, 2493719594804686310662382
OFFSET
2,1
LINKS
S. Alex Bradt, Jennifer Elder, Pamela E. Harris, Gordon Rojas Kirby, Eva Reutercrona, Yuxuan (Susan) Wang, and Juliet Whidden, Unit interval parking functions and the r-Fubini numbers, arXiv:2401.06937 [math.CO], 2024. See page 8.
Andrei Z. Broder, The r-Stirling numbers, Discrete Math. 49, 241-259 (1984).
Eldar Fischer, Johann A. Makowsky, and Vsevolod Rakita, MC-finiteness of restricted set partition functions, arXiv:2302.08265 [math.CO], 2023.
I. Mezo, Periodicity of the last digits of some combinatorial sequences, J. Integer Seq. 17, Article 14.1.1 (2014).
FORMULA
Let A(x) be the g.f. A232472, B(x) the g.f. A000670, then A(x) = (1-x)*B(x) - 1. - Sergei N. Gladkovskii, Nov 29 2013
a(n) = Sum_{k>=2} T_k*k^(n-2)/2^k where T_k is the (k-1)-st triangular number (i.e., T_k = k*(k-1)/2). - Derek Orr, Jan 01 2016
a(n) = 2*A069321(n-1). - Vincenzo Librandi, Jan 03 2016, corrected by Vaclav Kotesovec, Jul 01 2018
a(n) ~ n! / (2 * (log(2))^(n+1)). - Vaclav Kotesovec, Jul 01 2018
From Peter Bala, Dec 08 2020: (Start)
a(n+2) = Sum_{k = 0..n} (k+2)!/k!*( Sum{i = 0..k} (-1)^(k-i)*binomial(k,i)*(i+2)^n ).
a(n+2) = Sum_{k = 0..n} 2^(n-k)*binomial(n,k)*( Sum_{i = 0..k} Stirling2(k,i)*(i+2)! ).
a(n) = 2*A069321(n-1) = A000670(n) - A000670(n-1).
a(n+1)= (1/2)*Sum_{k = 0..n} binomial(n,k)*A000670(k+1) for n >= 1.
E.g.f. with offset 0: 2*exp(2*z)/(2 - exp(z))^3 = 2 + 10*z + 62*z^2/2! + 466*z^3/3! + .... (End)
EXAMPLE
G.f.: 2*x^2 + 10*x^3 + 62*x^4 + 466*x^5 + 4142*x^6 + 42610*x^7 + 498542*x^8 + ...
MAPLE
# r-Stirling numbers of second kind (e.g., A008277, A143494, A143495):
T := (n, k, r) -> (1/(k-r)!)*add ((-1)^(k+i+r)*binomial(k-r, i)*(i+r)^(n-r), i = 0..k-r):
# r-Bell numbers (e.g. A000110, A005493, A005494):
B := (n, r) -> add(T(n, k, r), k=r..n);
SB := r -> [seq(B(n, r), n=r..30)];
SB(2);
# r-Fubini numbers (e.g., A000670, A232472, A232473, A232474):
F := (n, r) -> add((k)!*T(n, k, r), k=r..n);
SF := r -> [seq(F(n, r), n=r..30)];
SF(2);
MATHEMATICA
Rest[max=20; t=Sum[n^(n - 1) x^n / n!, {n, 1, max}]; 2 Range[0, max]!CoefficientList[Series[D[1 / (1 - y (Exp[x] - 1)), y] /.y->1, {x, 0, max}], x]] (* Vincenzo Librandi Jan 03 2016 *)
Fubini[n_, r_] := Sum[k!*Sum[(-1)^(i+k+r)*(i+r)^(n-r)/(i!*(k-i-r)!), {i, 0, k-r}], {k, r, n}]; Table[Fubini[n, 2], {n, 2, 22}] (* Jean-François Alcover, Mar 30 2016 *)
PROG
(Magma) r:=2; r_Fubini:=func<n, r | &+[Factorial(k)*&+[(-1)^(k+h+r)*(h+r)^(n-r)/(Factorial(h)*Factorial(k-h-r)): h in [0..k-r]]: k in [r..n]]>;
[r_Fubini(n, r): n in [r..22]]; // Bruno Berselli, Mar 30 2016
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 27 2013
STATUS
approved
4-Fubini numbers.
+10
5
24, 216, 2184, 24696, 310344, 4304376, 65444424, 1083832056, 19437971784, 375544415736, 7779464328264, 172062025581816, 4047849158698824, 100946105980181496, 2660400563437957704, 73890563849015945976, 2157336929022064219464, 66059202473570840113656, 2116993226046938197020744
OFFSET
4,1
LINKS
Andrei Z. Broder, The r-Stirling numbers, Discrete Math. 49, 241-259 (1984).
I. Mezo, Periodicity of the last digits of some combinatorial sequences, arXiv preprint arXiv:1308.1637 [math.CO], 2013.
Benjamin Schreyer, Rigged Horse Numbers and their Modular Periodicity, arXiv:2409.03799 [math.CO], 2024. See p. 12.
FORMULA
From Peter Bala, Dec 16 2020: (Start)
a(n+4) = Sum_{k = 0..n} (k+4)!/k!*( Sum{i = 0..k} (-1)^(k-i)*binomial(k,i)*(i+4)^n ).
a(n+4) = Sum_{k = 0..n} 4^(n-k)*binomial(n,k)*( Sum_{i = 0..k} Stirling2(k,i)*(i+4)! ).
E.g.f. with offset 0: 24*exp(4*z)/(2 - exp(z))^5 = 24 + 216*z + 2184*z^2/2! + 24696*z^3/3! + .... (End)
a(n) ~ n! / (2 * log(2)^(n+1)). - Vaclav Kotesovec, Dec 17 2020
MAPLE
# r-Stirling numbers of second kind (e.g. A008277, A143494, A143495):
T := (n, k, r) -> (1/(k-r)!)*add ((-1)^(k+i+r)*binomial(k-r, i)*(i+r)^(n-r), i = 0..k-r):
# r-Bell numbers (e.g. A000110, A005493, A005494):
B := (n, r) -> add(T(n, k, r), k=r..n);
SB := r -> [seq(B(n, r), n=r..30)];
SB(2);
# r-Fubini numbers (e.g. A000670, A232472, A232473, A232474):
F := (n, r) -> add((k)!*T(n, k, r), k=r..n);
SF := r -> [seq(F(n, r), n=r..30)];
SF(4);
MATHEMATICA
Fubini[n_, r_] := Sum[k!*Sum[(-1)^(i+k+r)*(i+r)^(n-r)/(i!*(k-i-r)!), {i, 0, k-r}], {k, r, n}]; Table[Fubini[n, 4], {n, 4, 22}] (* Jean-François Alcover, Mar 30 2016 *)
PROG
(Magma) r:=4; r_Fubini:=func<n, r | &+[Factorial(k)*&+[(-1)^(k+h+r)*(h+r)^(n-r)/(Factorial(h)*Factorial(k-h-r)): h in [0..k-r]]: k in [r..n]]>;
[r_Fubini(n, r): n in [r..22]]; // Bruno Berselli, Mar 30 2016
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 27 2013
STATUS
approved
Array T(n, m) read by ascending antidiagonals: numerators of shifted Fubini numbers F(n, m) where m >= 0.
+10
3
1, 1, 1, 3, 1, 1, 13, 5, 1, 1, 75, 2, 5, 1, 1, 541, 191, 29, 29, 1, 1, 4683, 76, 263, 149, 7, 1, 1, 47293, 5081, 4157, 24967, 2687, 727, 1, 1, 545835, 674, 93881, 115567, 44027, 66247, 631, 1, 1, 7087261, 386237, 21209, 377909, 31627, 37728769, 354061, 4481, 1, 1
OFFSET
0,4
LINKS
Takao Komatsu, Shifted Bernoulli numbers and shifted Fubini numbers, Linear and Nonlinear Analysis, Volume 6, Number 2, 2020, 245-263.
FORMULA
T(n, m) = numerator(F(n, m)).
F(n, m) = n!*det(M(n, m)) where M(n, m) is the n X n Toeplitz matrix whose first row consists in 1/(m + 1)!, 1, 0, ..., 0 and whose first column consists in 1/(m + 1)!, -1/(m + 2)!, ..., (-1)^(n-1)/(m + n)! (see Proposition 5.1 in Komatsu).
F(n, m) = n!*Sum_{k=0..n-1} F(k, m)/((n - k + m)!*k!) for n > 0 and m >= 0 with F(0, m) = 1 (see Lemma 5.2).
F(n, m) = [x^n] n!*x^m/(x^m - exp(x) + E_m(x)), where E_m(x) = Sum_{n=0..m} x^n/n! (see Theorem 5.3 in Komatsu).
F(n, m) = n!*Sum_{k=1..n} Sum_{i_1+...+i_k=n, i_1,...,i_k>=1} Product_{j=1..k} 1/(i_j + m)! for n > 0 and m >= 0 (see Theorem 5.4).
F(1, m) = 1/(m + 1)! (see Theorem 5.5 in Komatsu).
F(n, m) = n!*Sum_{t_1+2*t_2+...+n*t_n=n} (t_1,...,t_n)!*(-1)^(n-t_1-...-t_n)*Product_{j=1..n} (1/(m + j)!)^t_j for n >= m >= 1 (see Theorem 5.7 in Komatsu).
(-1)^(n-1)/(n + m)! = det(M(n, m)) where M(n, m) is the n X n Toeplitz matrix whose first row consists in F(1, m), 1, 0, ..., 0 and whose first column consists in F(1, m), F(2, m)/2!, ..., F(n, m)/n! for n > 0 (see Theorem 5.8 in Komatsu).
Sum_{k=0..n} binomial(n, k)*F(k, m)*F(n-k, m) = - n!/(m^2*m!)*Sum_{l=0..n-1} ((m! + 1)/(m*m!))^(n-l-1)*(l*(m! + 1) - m)/l!*F(l, m) - (n - m)/m*F(n, m) for m > 0 (see Theorem 5.11 in Komatsu).
EXAMPLE
Array T(n, m):
n\m| 0 1 2 3 ...
---+--------------------------------
0 | 1 1 1 1 ...
1 | 1 1 1 1 ...
2 | 3 5 5 29 ...
3 | 13 2 29 149 ...
...
Related table of shifted Fubini numbers F(n, m):
1 1 1 1 ...
1 1/2 1/6 1/24 ...
3 5/6 5/36 29/1440 ...
13 2 29/180 149/11520 ...
...
MATHEMATICA
F[n_, m_]:=n!Coefficient[Series[x^m/(x^m-Exp[x]+Sum[x^k/k!, {k, 0, m}]), {x, 0, n}], x, n]; Table[Numerator[F[n-m, m]], {n, 0, 9}, {m, 0, n}]//Flatten
PROG
(PARI) tm(n, m) = {my(m = matrix(n, n, i, j, if (i==1, if (j==1, 1/(m + 1)!, if (j==2, 1)), if (j==1, (-1)^(i+1)/(m + i)!)))); for (i=2, n, for (j=2, n, m[i, j] = m[i-1, j-1]; ); ); m; }
T(n, m) = numerator(n!*matdet(tm(n, m))); \\ Michel Marcus, Dec 31 2020
CROSSREFS
Cf. A000012 (n = 0 and n = 1), A000670 (m = 0), A226513 (high-order Fubini numbers), A232472, A232473, A232474, A257565, A338873, A338874.
Cf. A338876 (denominators).
KEYWORD
nonn,frac,tabl
AUTHOR
Stefano Spezia, Dec 25 2020
STATUS
approved
Array T(n, m) read by ascending antidiagonals: denominators of shifted Fubini numbers F(n, m) where m >= 0.
+10
3
1, 1, 1, 1, 2, 1, 1, 6, 6, 1, 1, 1, 36, 24, 1, 1, 30, 180, 1440, 120, 1, 1, 3, 1080, 11520, 2400, 720, 1, 1, 42, 9072, 2419200, 2016000, 1814400, 5040, 1, 1, 1, 90720, 11612160, 60480000, 435456000, 12700800, 40320, 1, 1, 90, 7776, 33177600, 69120000, 548674560000, 21337344000, 812851200, 362880, 1
OFFSET
0,5
LINKS
Takao Komatsu, Shifted Bernoulli numbers and shifted Fubini numbers, Linear and Nonlinear Analysis, Volume 6, Number 2, 2020, 245-263.
FORMULA
T(n, m) = denominator(F(n, m)).
F(n, m) = n!*det(M(n, m)) where M(n, m) is the n X n Toeplitz matrix whose first row consists in 1/(m + 1)!, 1, 0, ..., 0 and whose first column consists in 1/(m + 1)!, -1/(m + 2)!, ..., (-1)^(n-1)/(m + n)! (see Proposition 5.1 in Komatsu).
F(n, m) = n!*Sum_{k=0..n-1} F(k, m)/((n - k + m)!*k!) for n > 0 and m >= 0 with F(0, m) = 1 (see Lemma 5.2).
F(n, m) = [x^n] n!*x^m/(x^m - exp(x) + E_m(x)), where E_m(x) = Sum_{n=0..m} x^n/n! (see Theorem 5.3 in Komatsu).
F(n, m) = n!*Sum_{k=1..n} Sum_{i_1+...+i_k=n, i_1,...,i_k>=1} Product_{j=1..k} 1/(i_j + m)! for n > 0 and m >= 0 (see Theorem 5.4).
F(1, m) = 1/(m + 1)! (see Theorem 5.5 in Komatsu).
F(n, m) = n!*Sum_{t_1+2*t_2+...+n*t_n=n} (t_1,...,t_n)!*(-1)^(n-t_1-...-t_n)*Product_{j=1..n} (1/(m + j)!)^t_j for n >= m >= 1 (see Theorem 5.7 in Komatsu).
(-1)^(n-1)/(n + m)! = det(M(n, m)) where M(n, m) is the n X n Toeplitz matrix whose first row consists in F(1, m), 1, 0, ..., 0 and whose first column consists in F(1, m), F(2, m)/2!, ..., F(n, m)/n! for n > 0 (see Theorem 5.8 in Komatsu).
Sum_{k=0..n} binomial(n, k)*F(k, m)*F(n-k, m) = - n!/(m^2*m!)*Sum_{l=0..n-1} ((m! + 1)/(m*m!))^(n-l-1)*(l*(m! + 1) - m)/l!*F(l, m) - (n - m)/m*F(n, m) for m > 0 (see Theorem 5.11 in Komatsu).
EXAMPLE
Array T(n, m):
n\m| 0 1 2 3 ...
---+--------------------------------
0 | 1 1 1 1 ...
1 | 1 2 6 24 ...
2 | 1 6 36 1440 ...
3 | 1 1 180 11520 ...
...
Related table of shifted Fubini numbers F(n, m):
1 1 1 1 ...
1 1/2 1/6 1/24 ...
3 5/6 5/36 29/1440 ...
13 2 29/180 149/11520 ...
...
MATHEMATICA
F[n_, m_]:=n!Coefficient[Series[x^m/(x^m-Exp[x]+Sum[x^k/k!, {k, 0, m}]), {x, 0, n}], x, n]; Table[Denominator[F[n-m, m]], {n, 0, 9}, {m, 0, n}]//Flatten
PROG
(PARI) tm(n, m) = {my(m = matrix(n, n, i, j, if (i==1, if (j==1, 1/(m + 1)!, if (j==2, 1)), if (j==1, (-1)^(i+1)/(m + i)!)))); for (i=2, n, for (j=2, n, m[i, j] = m[i-1, j-1]; ); ); m; }
T(n, m) = denominator(n!*matdet(tm(n, m))); \\ Michel Marcus, Dec 31 2020
CROSSREFS
Cf. A000012 (n = 0 or m = 0), A000142, A000670, A226513 (high-order Fubini numbers), A232472, A232473, A232474, A257565, A338873, A338874.
Cf. A338875 (numerators).
KEYWORD
nonn,frac,tabl
AUTHOR
Stefano Spezia, Dec 25 2020
STATUS
approved

Search completed in 0.007 seconds