login
A276891
Number T(n,k) of ordered set partitions of [n] where k is minimal such that for each block b the smallest integer interval containing b has at most k elements; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
14
1, 0, 1, 0, 2, 1, 0, 6, 4, 3, 0, 24, 20, 18, 13, 0, 120, 114, 118, 114, 75, 0, 720, 750, 878, 924, 870, 541, 0, 5040, 5616, 7224, 8152, 8760, 7818, 4683, 0, 40320, 47304, 65514, 79682, 90084, 94560, 81078, 47293, 0, 362880, 443400, 652446, 845874, 998560, 1135776, 1148016, 954474, 545835
OFFSET
0,5
LINKS
FORMULA
T(n,k) = A276890(n,k) - A276890(n,k-1) for k>0, T(n,0) = A000007(n).
EXAMPLE
Triangle T(n,k) begins:
1;
0, 1;
0, 2, 1;
0, 6, 4, 3;
0, 24, 20, 18, 13;
0, 120, 114, 118, 114, 75;
0, 720, 750, 878, 924, 870, 541;
0, 5040, 5616, 7224, 8152, 8760, 7818, 4683;
0, 40320, 47304, 65514, 79682, 90084, 94560, 81078, 47293;
...
MAPLE
b:= proc(n, m, l) option remember; `if`(n=0, m!,
add(b(n-1, max(m, j), [subsop(1=NULL, l)[],
`if`(j<=m, 0, j)]), j={l[], m+1} minus {0}))
end:
A:= (n, k)-> `if`(k=0, `if`(n=0, 1, 0),
`if`(k=1, n!, b(n, 0, [0$(k-1)]))):
T:= (n, k)-> A(n, k) -`if`(k=0, 0, A(n, k-1)):
seq(seq(T(n, k), k=0..n), n=0..10);
MATHEMATICA
b[n_, m_, l_List] := b[n, m, l] = If[n == 0, m!, Sum[b[n - 1, Max[m, j], Append[ReplacePart[l, 1 -> Nothing], If[j <= m, 0, j]]], {j, Append[l, m + 1] ~Complement~ {0}}]]; A[n_, k_] := If[k == 0, If[n == 0, 1, 0], If[k == 1, n!, b[n, 0, Array[0 &, k - 1]]]]; T [n_, k_] := A[n, k] - If[k == 0, 0, A[n, k - 1]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 04 2017, translated from Maple *)
CROSSREFS
Columns k=0-10 give: A000007, A000142 (for n>0), A320615, A320616, A320617, A320618, A320619, A320620, A320621, A320622, A320623.
Row sums give: A000670.
Main diagonal gives A000670(n-1) for n>0.
T(2n,n) gives A276892.
Sequence in context: A090238 A358694 A047922 * A021830 A247686 A352369
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Sep 21 2016
STATUS
approved