login
A133215
Hexagonal numbers (A000384) which are sum of 2 other hexagonal numbers > 0.
2
276, 703, 861, 1225, 2850, 3003, 4560, 5151, 8128, 10878, 11781, 12090, 12720, 13366, 14706, 15400, 16110, 18721, 21115, 22366, 24090, 24531, 26796, 29161, 29646, 31125, 32131, 33153, 36315, 38503, 39621, 40186, 42486, 45451, 47895
OFFSET
1,1
COMMENTS
This is to A136117 as A000384 is to A000326. Duke and Schulze-Pillot (1990) proved that every sufficiently large integer (and hence every sufficiently large hexagonal number) can be written as the sum of three hexagonal numbers.
LINKS
Eric Weisstein's World of Mathematics, Hexagonal Number.
FORMULA
{x: x>0 and x in A000384 and x = A000384(i) + A000384(j) for i>0 and j>0}, where A000384 = {n*(2*n-1) for n > 0}.
EXAMPLE
hex(19) = 703 = 378 + 325 = hex(14) + hex(13).
hex(21) = 861 = 630 + 231 = hex(18) + hex(11).
hex(25) = 1225 = 1035 + 190 = hex(23) + hex(10).
hex(38) = 2850 = 2415 + 435 = hex(35) + hex(15).
hex(39) = 3003 = 2850 + 153 = hex(38) + hex(9) = 2415 + 435 + 153 = hex(35) + hex(15) + hex(9).
hex(48) = 4560 = 2415 + 2145 = hex(35) + hex(33).
MATHEMATICA
With[{upto=60000}, Select[Union[Total/@Subsets[Table[n(2n-1), {n, Ceiling[ (1+Sqrt[1+8upto])/4]}], {2}]], IntegerQ[(1+Sqrt[1+8#])/4]&&#<=upto&]] (* Harvey P. Dale, Jul 24 2011 *)
CROSSREFS
Sequence in context: A008892 A216072 A284277 * A343426 A015232 A128382
KEYWORD
nonn
AUTHOR
Jonathan Vos Post, Dec 18 2007
EXTENSIONS
Added missing term 276 and a(8)-a(35) from Donovan Johnson, Sep 27 2008
STATUS
approved