login
A054352
Lengths of successive generations of the Kolakoski sequence A000002.
11
1, 2, 4, 7, 11, 18, 28, 43, 65, 99, 150, 226, 340, 511, 768, 1153, 1728, 2590, 3885, 5826, 8742, 13116, 19674, 29514, 44280, 66431, 99667, 149531, 224306, 336450, 504648, 756961, 1135450, 1703197, 2554846, 3832292, 5748474, 8622646, 12933971, 19400955, 29101203
OFFSET
0,2
COMMENTS
Starting with a(0) = 1, the first term of A000002, the n-th generation is the run of figures directly generated from the preceding generation completed with a single last figure which begins the next run. Thus a(0) = 1 -> 1-2 -> 1-22-1 -> 1-2211-2-1 etc. - Jean-Christophe Hervé, Oct 26 2014
It seems that the limit (c =) lim_{n -> oo} a(n)/(3/2)^n exists, with c = 2.63176..., so a(n) ~ (3/2)*a(n-1) ~ c * (3/2)^n, for large n. - A.H.M. Smeets, Apr 12 2024
LINKS
Michael S. Branicky, Table of n, a(n) for n = 0..61
FORMULA
a(0) = 1, and for n > 0, a(n) = A054353(a(n-1))+1. - Jean-Christophe Hervé, Oct 26 2014
MATHEMATICA
A2 = {1, 2, 2}; Do[If[Mod[n, 10^5] == 0, Print["n = ", n]]; m = 1 + Mod[n - 1, 2]; an = A2[[n]]; A2 = Join[A2, Table[m, {an}]], {n, 3, 10^6}]; A054353 = Accumulate[A2]; Clear[a]; a[0] = 1; a[n_] := a[n] = A054353[[a[n - 1]]] + 1; Table[a[n], {n, 0, 33}] (* Jean-François Alcover, Oct 30 2014, after Jean-Christophe Hervé *)
PROG
(Python)
def aupton(nn):
alst, A054353, idx = [1], 0, 1
K = Kolakoski() # using Kolakoski() in A000002
for n in range(2, nn+1):
target = alst[-1]
while idx <= target:
A054353 += next(K)
idx += 1
alst.append(A054353 + 1) # a(n) = A054353(a(n-1))+1
return alst
print(aupton(36)) # Michael S. Branicky, Jan 12 2021
CROSSREFS
Partial sums of A329758.
Sequence in context: A261666 A034412 A289131 * A091838 A288219 A004696
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, May 07 2000
EXTENSIONS
a(7)-a(32) from John W. Layman, Aug 20 2002
a(33) from Jean-François Alcover, Oct 30 2014
a(34) and beyond from Michael S. Branicky, Jan 12 2021
STATUS
approved