login
A050252
Number of digits in the prime factorization of n (counting terms of the form p^1 as p).
8
1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 3, 3, 2, 4, 2, 3, 3, 3, 2, 3, 2, 4, 3, 3, 2, 3, 2, 3, 3, 4, 2, 3, 3, 3, 3, 3, 2, 4, 2, 3, 3, 2, 3, 4, 2, 4, 3, 3, 2, 4, 2, 3, 3, 4, 3, 4, 2, 3, 2, 3, 2, 4, 3, 3, 3, 4, 2, 4, 3, 4, 3, 3, 3, 3, 2, 3, 4, 4, 3, 4
OFFSET
1,4
COMMENTS
a(A192010(n)) = n and a(m) != n for m < A192010(n);
a(A046759(n))<A055642(A046759(n)); a(A046758(n))=A055642(A046758(n)); a(A046760(n))>A055642(A046760(n)). [Reinhard Zumkeller, Jun 21 2011]
LINKS
Eric Weisstein's World of Mathematics, Prime Factorization.
MATHEMATICA
nd[n_]:=Total@IntegerLength@Select[Flatten@FactorInteger[n], #>1&]; Table[If[n==1, 1, nd[n]], {n, 102}] (* Vladimir Joseph Stephan Orlovsky, Jan 30 2012 *)
PROG
(Haskell)
a050252 1 = 1
a050252 n = sum $ map a055642 $
(a027748_row n) ++ (filter (> 1) $ a124010_row n)
-- Reinhard Zumkeller, Aug 03 2013, Jun 21 2011
CROSSREFS
KEYWORD
nonn,base
STATUS
approved