OFFSET
1,2
COMMENTS
If the canonical factorization of n into prime powers is the product of p^e(p) then sigma_k(n) = Product_p ((p^((e(p)+1)*k))-1)/(p^k-1).
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6..24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001
Also the eigenvalues of the Hecke operator T_n for the entire modular normalized Eisenstein form E_4(z) (see A004009): T_n E_4 = a(n) E_4, n >= 1. For the Hecke operator T_n and eigenforms see, e.g., the Koecher-Krieg reference, p. 207, eq. (5) and p. 211, section 4, or the Apostol reference p. 120, eq. (13) and pp. 129 - 133. - Wolfdieter Lang, Jan 28 2016
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math.Series 55, Tenth Printing, 1972, p. 827.
T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 38.
T. M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Second edition, Springer, 1990, pp. 120, 129 - 133.
G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publishing, Providence, Rhode Island, 2002, p. 166.
Max Koecher and Aloys Krieg, Elliptische Funktionen und Modulformen, 2. Auflage, Springer, 2007, pp. 207, 211.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Zagier, Don. "Elliptic modular forms and their applications." The 1-2-3 of modular forms. Springer Berlin Heidelberg, 2008. 1-103. See p. 17, G_4(z).
LINKS
T. D. Noe, Table of n, a(n) for n = 1..10000
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math.Series 55, Tenth Printing, 1972, p. 827.
Joerg Arndt, On computing the generalized Lambert series, arXiv:1202.6525v3 [math.CA], (2012).
D. B. Lahiri, Some arithmetical identities for Ramanujan's and divisor functions, Bulletin of the Australian Mathematical Society, Volume 1, Issue 3 December 1969, pp. 307-314. See Theorem 2 p. 308.
Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
Eric Weisstein's World of Mathematics, Divisor Function.
FORMULA
Multiplicative with a(p^e) = (p^(3e+3)-1)/(p^3-1). - David W. Wilson, Aug 01 2001
Dirichlet g.f. zeta(s)*zeta(s-3). - R. J. Mathar, Mar 04 2011
G.f.: sum(k>=1, k^3*x^k/(1-x^k)). - Benoit Cloitre, Apr 21 2003
Equals A051731 * [1, 8, 27, 64, 125, ...] = A127093 * [1, 4, 9, 16, 25, ...]. - Gary W. Adamson, Nov 02 2007
L.g.f.: -log(Product_{j>=1} (1-x^j)^(j^2)) = (1/1)*z^1 + (9/2)*z^2 + (28/3)*z^3 + (73/4)*z^4 + ... + (a(n)/n)*z^n + ... - Joerg Arndt, Feb 04 2011
a(n) = Sum{d|n} tau_{-2}^d*J_3(n/d), where tau_{-2} is A007427 and J_3 is A059376. - Enrique Pérez Herrero, Jan 19 2013
a(n) = A004009(n)/240. - Artur Jasinski, Sep 06 2016. See, e.g., Hardy, p. 166, (10.5.6), with Q = E_4, and with present offset 0. - Wolfdieter Lang, Jan 31 2017
8*a(n) = sum of cubes of even divisors of 2*n. - Wolfdieter Lang, Jan 07 2017
G.f.: Sum_{n >= 1} x^n*(1 + 4*x^n + x^(2*n))/(1 - x^n)^4. - Peter Bala, Jan 11 2021
Faster converging g.f.: Sum_{n >= 1} q^(n^2)*( n^3 + ((n + 1)^3 - 3*n^3)*q^n + (4 - 6*n^2)*q^(2*n) + (3*n^3 - (n - 1)^3)*q^(3*n) - n^3*q^(4*n) )/(1 - q^n)^4 - apply the operator x*d/dx three times to equation 5 in Arndt and then set x = 1. - Peter Bala, Jan 21 2021
a(n) = Sum_{1 <= i, j, k <= n} tau(gcd(i, j, k, n)) = Sum_{d divides n} tau(d)* J_3(n/d), where the divisor function tau(n) = A000005(n) and the Jordan totient function J_3(n) = A059376(n). - Peter Bala, Jan 22 2024
EXAMPLE
G.f. = x + 9*x^2 + 28*x^3 + 73*x^4 + 126*x^5 + 252*x^6 + 344*x^7 + ...
MAPLE
seq(numtheory:-sigma[3](n), n=1..100); # Robert Israel, Feb 05 2016
MATHEMATICA
Table[DivisorSigma[3, n], {n, 100}] (* corrected by T. D. Noe, Mar 22 2009 *)
PROG
(PARI) N=99; q='q+O('q^N);
Vec(sum(n=1, N, n^3*q^n/(1-q^n))) /* Joerg Arndt, Feb 04 2011 */
(Sage) [sigma(n, 3) for n in range(1, 40)] # Zerinvary Lajos, Jun 04 2009
(Maxima) makelist(divsum(n, 3), n, 1, 100); /* Emanuele Munarini, Mar 26 2011 */
(Magma) [DivisorSigma(3, n): n in [1..40]]; // Bruno Berselli, Apr 10 2013
(Haskell)
a001158 n = product $ zipWith (\p e -> (p^(3*e + 3) - 1) `div` (p^3 - 1))
(a027748_row n) (a124010_row n)
-- Reinhard Zumkeller, Jun 30 2013
(PARI) {a(n) = if( n<1, 0, sumdiv(n, d, d^3))}; /* Michael Somos, Jan 07 2017 */
(Python)
from sympy import divisor_sigma
def a(n): return divisor_sigma(n, 3)
print([a(n) for n in range(1, 43)]) # Michael S. Branicky, Jan 09 2021
CROSSREFS
KEYWORD
nonn,easy,nice,mult
AUTHOR
STATUS
approved