Skip to main content
Log in

Status of the AMoRE Experiment Searching for Neutrinoless Double Beta Decay Using Low-Temperature Detectors

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The goal of the Advanced Mo-based Rare process Experiment (AMoRE) is to search for the neutrinoless double beta decay of \(^{100}\)Mo using low-temperature detectors consisting of Mo-based scintillating crystals read out via metallic magnetic calorimeters. Heat and light signals are measured simultaneously at millikelvin temperatures, which are reached using a cryogen-free dilution refrigerator. The AMoRE-Pilot experiment, using six \(^{100}\)Mo-enriched, \(^{48}\)Ca-depleted calcium molybdate crystals with a total mass of about 1.9 kg, has been running in the 700-m-deep Yangyang underground laboratory as the pilot phase of the AMoRE project. Several setup improvements through different runs allowed us to achieve a high energy resolution and an efficient particle discrimination. This article briefly presents the status of the AMoRE-Pilot experiment, as well as the plans for the next, larger-scale, experimental stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. JSC Production Association Electrochemical plant (Russia)

  2. Russian ElectroKhimPribor Integrated Plant (Russia)

References

  1. R.N. Mohapatra et al., Rep. Prog. Phys. 70, 1757 (2007). https://doi.org/10.1088/0034-4885/70/11/R02

    Article  ADS  Google Scholar 

  2. F.T. Avignone III, S.R. Elliott, J. Engel, Rev. Mod. Phys. 80, 481 (2008). https://doi.org/10.1103/RevModPhys.80.481

    Article  ADS  Google Scholar 

  3. S. Dell’Oro, S. Marcocci, M. Viel, F. Vissani, Adv. High Energy Phys. 2016, 2162659 (2016). https://doi.org/10.1155/2016/2162659

    Article  Google Scholar 

  4. V. Alenkov et al. (AMoRE Collaboration), arXiv:1512.05957 [physics.ins-det], (2015)

  5. G.B. Kim et al., Adv. High Energy Phys. 2015, 817530 (2015). https://doi.org/10.1155/2015/817530

    Article  Google Scholar 

  6. G.B. Kim et al., Astropart. Phys. 91, 105–112 (2017). https://doi.org/10.1016/j.astropartphys.2017.02.009

    Article  ADS  Google Scholar 

  7. I. Kim et al., Supercond. Sci. Technol. 30, 094005 (2017). https://doi.org/10.1088/1361-6668/aa7c73

    Article  ADS  Google Scholar 

  8. H.S. Lee et al., KIMS collaboration. Phys. Lett. B 633, 201–208 (2006). https://doi.org/10.1016/j.physletb.2005.12.035

    Article  ADS  Google Scholar 

  9. C.S. Kang et al., Supercond. Sci. Technol. 30, 084011 (2017). https://doi.org/10.1088/1361-6668/aa757a

    Article  ADS  Google Scholar 

  10. C. Enss et al., J. Low Temp. Phys. 121, 137–176 (2000). https://doi.org/10.1023/A:1004863823166

    Article  ADS  Google Scholar 

  11. A. Fleischmann, C. Enss, G. Seidel, Metallic magnetic calorimeters, in Cryogenic Particle Detection. Topics in Applied Physics, vol. 99, ed. by C. Enss (Springer, Berlin, 2005), pp. 151–216. https://doi.org/10.1007/10933596_4

    Chapter  Google Scholar 

  12. S.J. Lee et al., Astropart. Phys. 34, 732–737 (2011). https://doi.org/10.1016/j.astropartphys.2011.01.004

    Article  ADS  Google Scholar 

  13. W.S. Yoon et al., J. Low Temp. Phys. 176, 644–649 (2014). https://doi.org/10.1007/s10909-013-1067-3

    Article  ADS  Google Scholar 

  14. A. Burck et al., J. Low Temp. Phys. 151, 337–344 (2008). https://doi.org/10.1007/s10909-007-9659-4

    Article  ADS  Google Scholar 

  15. V.V. Alenkov et al., Cryst. Res. Technol. 46, 1223–1228 (2011). https://doi.org/10.1002/crat.201100364

    Article  Google Scholar 

  16. J.H. So et al., IEEE Trans. Nucl. Sci. 59, 2214–2218 (2012). https://doi.org/10.1109/TNS.2012.2200908

    Article  ADS  Google Scholar 

  17. G.B. Kim et al., IEEE Trans. Nucl. Sci. 63, 539–542 (2016). https://doi.org/10.1109/TNS.2015.2493529

    Article  ADS  Google Scholar 

  18. C. Lee et al., JINST 12, C02057 (2017). https://doi.org/10.1088/1748-0221/12/02/C02057

    Article  Google Scholar 

  19. C. Lee et al., J. Low Temp. Phys. This Special Issue LTD17 (2018)

  20. I. Kim et al., J. Low Temp. Phys. This Special Issue LTD17 (2018)

Download references

Acknowledgements

We thank the members of the AMoRE Collaboration. We also thank the Korea Midland Power Co. and Korea Hydro and Nuclear Power Co. for providing the underground space for Y2L. This work was funded by Grant No. IBS-R016-G1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. S. Jo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jo, H.S., Choi, S., Danevich, F.A. et al. Status of the AMoRE Experiment Searching for Neutrinoless Double Beta Decay Using Low-Temperature Detectors. J Low Temp Phys 193, 1182–1189 (2018). https://doi.org/10.1007/s10909-018-1925-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-018-1925-0

Keywords

Navigation