Skip to main content
Log in

Metallic Magnetic Calorimeters for Particle Detection

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The principles and theory of operation of a magnetic calorimeter, made of a dilute concentration of paramagnetic ions in a metallic host, is discussed in relation to the use of such a device as a detector of x-rays. The response of a calorimeter to the absorption of energy depends upon size, heat capacity, temperature, magnetic field, concentration of spins and interactions among them. The conditions that optimize the performance of a calorimeter are derived. Noise sources, especially that due to thermodynamic fluctuations of the electrons in the metal, are analyzed. Measurements have been made on detectors in which Er serves as the paramagnetic ion and Au as the host metal. The measured resolution of a detector with a heat capacity of 10−12 J/K was 12 eV at 6 keV. In a detector suitable for use with hard x-rays up to 200 keV a resolution of 120 eV was obtained. Calculations indicate that the performance of both detectors can be improved by an order of magnitude. At temperatures below 50 mK, the time response of the Au : Er calorimeters to an energy deposition indicates the presence of an additional heat capacity, which we interpret as arising from the quadruple splitting of the Au nuclei in the electric field gradients introduced by the presence of the Er ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. B. Ketchen, D. D. Awschalom, W. J. Gallagher, A. W. Kleinsasser, R. L. Sandstrom, J. R. Rosen, and B. Bumble, IEEE Trans. Mag. 25, 1212 (1989).

    Google Scholar 

  2. S. R. Bandler, C. Enss, R. E. Lanou, H. J. Maris, T. More, F. S. Porter, and G. M. Seidel, J. Low Temp. Phys. 93, 709 (1993).

    Google Scholar 

  3. T. C. P. Chui, D. R. Swanson, M. J. Adriaans, J. A. Nissen, and J. A. Lipa, Phys. Rev. Lett. 69 3005 (1992).

    Google Scholar 

  4. E. Umlauf, M. Bühler, and T. Fausch in Phonon Scattering in Condensed Matter VII, edited by M. Meissner and R. O. Pohl, Springer-Verlag, Berlin (1993) p. 490; E. Umlauf and M. Bühler in Low Temperature Detectors for Neutrinos and Dark Matter, edited by N. E. Booth and G. L. Salmon, Editions Frontieres, Gif-sur-Yvette (1991) p. 237.

    Google Scholar 

  5. P. G. de Gennes, Comt. Rend. 247, 1836 (1958).

    Google Scholar 

  6. K. Yosida, Theory of Magnetism, Springer, Berlin (1996).

    Google Scholar 

  7. A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions, Clarendon Press, Oxford (1970).

    Google Scholar 

  8. A. Fleischmann, J. Schönefeld, J. Sollner, C. Enss, J. S. Adams, S. R. Bandler, Y. H. Kim, and G. M. Seidel, J. Low Temp. Phys. 118, 7 (2000).

    Google Scholar 

  9. L. R. Walker and R. E. Walsted, Phys. Rev. B 22, 3816 (1980); L. R. Walker and R. E. Walsted, Phys. Rev. Lett. 38, 514 (1977).

    Google Scholar 

  10. J. Schönefeld, Ph.D. thesis, University of Heidelberg (2000).

  11. Y. von Spalden and K. Baberschke, J. Mag. Mag. Mat. 23, 183 (1981).

    Google Scholar 

  12. M. E. Sjöstrand and G. M. Seidel, Phys. Rev. B 11, 3292 (1975).

    Google Scholar 

  13. D. Pines and P. Nozieres, The Theory of Quantum Liquids, Benjamin, New York (1966).

    Google Scholar 

  14. J. J. Quinn and R. A. Ferrell, Phys. Rev. 112, 812 (1958).

    Google Scholar 

  15. G. Tas and H. J. Maris, Phys. Rev. B 49, 15046 (1994).

    Google Scholar 

  16. M. I. Kaganov, I. M. Lifshitz, and L. V. Tanatarov, Zh. Eksp. Teor. Fiz. 31, 232 (1956) [Sov. Phys. 4, 173 (1957)].

    Google Scholar 

  17. P. B. Allen, Phys. Rev. Lett. 59, 1460 (1987).

    Google Scholar 

  18. H. J. Maris, private communication.

  19. C. D. Tesche and J. Clarke, J. Low Temp. Phys. 29, 301 (1977).

    Google Scholar 

  20. T. Varpula and T. Poutanen, J. Appl. Phys. 55, 4015 (1984), see also B. J. Roth, J. Appl. Phys. 83, 635 (1998).

    Google Scholar 

  21. D. T. Gillespie, J. Appl. Phys. 83, 3118 (1998).

    Google Scholar 

  22. J. T. Harding and J. E. Zimmerman, Phys. Lett. A 27, 670 (1968).

    Google Scholar 

  23. W. R. Smythe, Static and Dynamic Electricity, McGraw—Hill, New York (1939).

    Google Scholar 

  24. A. Fleischmann, C. Enss, J. Schönefeld, J. Sollner, K. Horst, J. S. Adams, Y. H. Kim, S. R. Bandler, and G. M. Seidel, Nucl. Instrum. Methods A 444, 100 (2000).

    Google Scholar 

  25. J. Schönefeld, C. Enss, A. Fleischmann, J. Sollner, K. Horst, J. S. Adams, Y. H. Kim, S. R. Bandler, and G. M. Seidel, Nucl. Instrum. Methods A 444, 211 (2000).

    Google Scholar 

  26. G. Hölzer, M. Fritsch, M. Deutsch, J. Härtwig, and E. Förster, Phys. Rev. A 56, 4554 (1997).

    Google Scholar 

  27. P. A. Lingard, X. W. Wang, and B. N. Harmon, J. Mag. Magn. Mater. 5457, 1052 (1986); D. J. Miller and S. J. Frisken, J. Appl. Phys. 64, 5630 (1988).

    Google Scholar 

  28. S. Arajs and G. R. Dunmyre, J. Less-Common Metals 10, 220 (1966), see also L. R. Edwards and S. Levgold, J. Appl. Phys. 39 3250 (1968).

    Google Scholar 

  29. T. Herrmannsdörfer, R. König, and C. Enss, Physica B 284–288, 1698 (2000).

    Google Scholar 

  30. E. R. Andrew, J. L. Carolan, and P. J. Randall, Phys. Lett. A 37, 125 (1971).

    Google Scholar 

  31. F. Pobell, Matter and Methods at Low Temperatures, Springer, Berlin (1996).

    Google Scholar 

  32. K. Horst, Diploma thesis, University of Heidelberg (1999).

  33. K. Siemensmeyer and M. Steiner, Z. Phys. B, Cond. Mat. 89, 305 (1992).

    Google Scholar 

  34. B. Drittler, M. Weinert, R. Zeller, and P. H. Dederichs, Phys. Rev. B 42, 9336 (1990).

    Google Scholar 

  35. J. Ehmann and M. Fä hnle, Phys. Rev. B 55, 7478 (1997); A. Seeger, J. Ehmann, and M. Fähnle, Z. Naturforsch. A 51, 489 (1996).

    Google Scholar 

  36. J. A. Sawicki, J. E. Dutrizac, J. Friedl, F. E. Wagner, and T. T. Chen, Nucl. Instrum. Methods B 76, 378 (1993).

    Google Scholar 

  37. M. Minier and C. Minier, Phys. Rev. B 22, 21 (1980); K. Konzelmann, G. Majer, and A. Seeger, Z. Naturforsch. A 51, 506 (1996).

    Google Scholar 

  38. R. M. Sternheimer, Z. Naturforsch. A 41, 24 (1986).

    Google Scholar 

  39. J. S. Adams, A. Fleischmann, Y. H. Huang, Y. H. Kim, R. E. Lanou, H. J. Maris, and G. M. Seidel, Nucl. Instrum. Methods A 444, 51 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Enss, C., Fleischmann, A., Horst, K. et al. Metallic Magnetic Calorimeters for Particle Detection. Journal of Low Temperature Physics 121, 137–176 (2000). https://doi.org/10.1023/A:1004863823166

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004863823166

Keywords

Navigation