Skip to main content
Log in

Propagation Dynamics in a Heterogeneous Reaction-Diffusion System Under a Shifting Environment

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

We consider the propagation dynamics of a general heterogeneous reaction-diffusion system under a shifting environment. By developing the fixed-point theory for second order non-autonomous differential system and constructing appropriate upper and lower solutions, we show there exists a nondecreasing wave front with the speed consistent with the habitat shifting speed. We further show the uniqueness of forced waves by the sliding method and some analytical skills, and we obtain the global stability of forced waves by applying the dynamical systems approach. Moreover, we establish the spreading speed of the system by appealing to the abstract theory of monotone semiflows. Applications and numerical simulations are also given to illustrate the analytical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Berestyck, H., Diekmann, O., Nagelkerke, C., Zegeling, P.: Can a species keep pace with a shifting climate. Bull. Math. Biol. 71, 399–429 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Garnier, J., Lewis, M.: Expansion under climate change: the genetic consequences. Bull. Math. Biol. 78, 2165–2185 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berestycki, H., Rossi, L.: Reaction-diffusion equations for population dynamics with forced speed I-The case of the whole space. Discret. Contin. Dyn. Syst. A 21(1), 41–67 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berestycki, H., Rossi, L.: Reaction-diffusion equations for population dynamics with forced speed II- cylinderical-type domains. Discret. Contin. Dyn. Syst. A 25(1), 19–61 (2009)

    Article  MATH  Google Scholar 

  5. Vo, H.: Persistence versus extinction under a climate change in mixed environments. J. Differ. Equ. 259, 4947–4988 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berestycki, H., Fang, J.: Forced waves of the Fisher-KPP equation in a shifting environment. J. Differ. Equ. 264, 2157–2183 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Li, B., Bewick, S., Shang, J., Fagan, W.: Persistence and spread of a species with a shifting habitat edge. SIAM J. Appl. Math. 74(5), 1397–1417 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hu, H., Zou, X.: Existence of an extinction wave in the fisher equation with a shifting habitat. Proc. Am. Math. Soc. 145, 4763–4771 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fang, J., Lou, Y., Wu, J.: Can pathogen spread keep pace with its host invasion? SIAM J. Appl. Math. 76(4), 1633–1657 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hu, H., Yi, T., Zou, X.: On spatial-temporal dynamics of Fisher-KPP equation with a shifting environment. Proc. Am. Math. Soc. 148, 213–221 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  11. Li, W.-T., Wang, J.-B., Zhao, X.-Q.: Spatial dynamics of a nonlocal dispersal population model in a shifting environmet. J. Nonlinear Sci. 28(4), 1189–1219 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Wang, J.-B., Wu, C.: Forced waves and gap formations for a Lotka-Volterra competition model with nonlocal dispersal and shifting habitats. Nonlinear Anal. Real World Appl. 58, 103208 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wu, C., Wang, Y., Zou, X.: Spatial-temporal dynamics of a Lotka-Volterra competition model with nonlocal dispersal under shifting environment. J. Differ. Equ. 267, 4890–4921 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Wu, C., Yang, Y., Wu, Z.: Existence and uniqueness of forced waves in a delayed reaction-diffusion equation in a shifting environment. Nonlinear Anal. Real World Appl. 57, 103198 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhang, G.-B., Zhao, X.-Q.: Propagation dynamics of a nonlocal dispersal Fisher-KPP equation in a time-periodic shifting habitat. J. Differ. Equ. 268, 2852–2885 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. Liang, X., Zhao, X.-Q.: Asymptotic speeds of spread and traveling waves for monotone semiflows with applications. Commun. Pure Appl. Math. 60, 1–40 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, B., Weinberger, H., Lewis, M.A.: Spreading speeds as slowest wave speeds for cooperative systems. Math. Biosci. 196, 82–98 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ma, S.W.: Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem. J. Differ. Equ. 171, 294–314 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wu, J., Zou, X.: Traveling wave fronts of reaction-diffusion systems with delay. J. Dyn. Differ. Equ. 13(3), 651–687 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Xu, Z.: Global stability of travelling waves for a class of monostable epidemic models. Commun. Nonlinear Sci. Numer. Simul. 95, 105595 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  21. Xu, Z., Xiao, D.: On uniqueness of traveling waves for a reaction diffusion equation with spatio-temporal delay. J. Differ. Equ. 291, 195–219 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wang, J.-B., Zhao, X.-Q.: Uniqueness and global stability of forced waves in a shifting environment. Proc. Am. Math. Soc. 147, 1467–1481 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yi, T., Zhao, X.-Q.: Propagation dynamics for monotone evolution systems without spatial translation invariance. J. Funct. Anal. 279, 108722 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  24. Smith, H.: Monotone dynamical systems: An introduction to the theory of competitive and cooperative systems. In: American Mathematical Society, vol. 41. Mathematical Surveys and Monographs, Providence, RI (1995)

  25. Pao, C.V.: Nonlinear Parabolic and Elliptic Equations. Plenum Press, New York (1992)

    MATH  Google Scholar 

  26. Protter, M., Weinberger, H.: Maximum Principles in Differential Equations. Springer, New York (1984)

    Book  MATH  Google Scholar 

  27. Hofbauer, J., Sigmund, K.: Evolutionary Games and Population Dynamics. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  28. Yang, Y., Wu, C., Li, Z.: Forced waves and their asymptotics in a Lotka-Volterra cooperative model under climate change. Appl. Math. Comp. 353, 254–264 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wu, C., Xiao, D., Zhao, X.-Q.: Spreading speeds of a partially degenerate reaction-diffusion system in a periodic habitat. J. Differ. Equ. 255, 3983–4011 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Weinberger, H., Lewis, M., Li, B.: Analysis of linear determinacy for spread in cooperative models. J. Math. Biol. 45, 183–218 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are very grateful to the anonymous referees for their careful reading and valuable suggestions which have led to an improvement of the the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoquan Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

C. Wu was supported by the NSF of China (No. 12071074), Guangdong Basic and Applied Basic Research Foundation (No. 2019A1515011648). Z. Xu was supported by the NSF of China (No. 12071182,   No. 11701216), NSF of Guangdong Province (No. 2017A030313015) and the Fundamental Research Funds for the Central Universities.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, C., Xu, Z. Propagation Dynamics in a Heterogeneous Reaction-Diffusion System Under a Shifting Environment. J Dyn Diff Equat 35, 493–521 (2023). https://doi.org/10.1007/s10884-021-10018-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-021-10018-0

Keywords

Mathematics Subject Classification

Navigation