Skip to main content
Log in

Spatial Dynamics of a Nonlocal Dispersal Population Model in a Shifting Environment

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

This paper is concerned with the spatial dynamics of a nonlocal dispersal population model in a shifting environment where the favorable region is shrinking. It is shown that the species becomes extinct in the habitat if the speed of the shifting habitat edge \(c>c^*(\infty )\), while the species persists and spreads along the shifting habitat at an asymptotic speed \(c^*(\infty )\) if \(c<c^*(\infty )\), where \(c^*(\infty )\) is determined by the nonlocal dispersal kernel, diffusion rate and the maximum linearized growth rate. Moreover, we demonstrate that for any given speed of the shifting habitat edge, the model system admits a nondecreasing traveling wave with the wave speed at which the habitat is shifting, which indicates that the extinction wave phenomenon does happen in such a shifting environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bates, P., Chen, F.: Periodic traveling waves for a nonlocal integro-differential model. Electron. J. Differ. Equ. 1999, 1–19 (1999)

    MathSciNet  MATH  Google Scholar 

  • Berestycki, H., Fang, J.: Forced waves of the Fisher-KPP equation in a shifting environment. J. Differ. Equ. 264, 2157–2183 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Berestycki, H., Diekmann, O., Nagelkerke, C.J., Zegeling, P.A.: Can a species keep pace with a shifting climate? Bull. Math. Biol. 71, 399–429 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Carr, J., Chmaj, A.: Uniqueness of travelling waves for nonlocal monostable equations. Proc. Am. Math. Soc. 132, 2433–2439 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Coville, J.: Travelling Waves in a Nonlocal Reaction Diffusion Equation with Ignition Nonlinearity. Ph.D. Thesis, Université Pierre et Marie Curie, Paris (2003)

  • Coville, J.: Maximum principles, sliding techniques and applications to nonlocal equations. Electron. J. Differ. Equ. 2007(68), 1–23 (2007)

    MathSciNet  MATH  Google Scholar 

  • Coville, J.: Travelling Fronts in Asymmetric Nonlocal Reaction Diffusion Equation: The Bistable and Ignition Case. Prépublication du CMM, Hal-00696208 (2012)

  • Coville, J., Dávila, J., Martínez, S.: Pulsating fronts for nonlocal dispersion and KPP nonlinearity. Ann. Inst. H. Poincaré Anal. Non Linéaire 30, 179–223 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Du, Y., Wei, L., Zhou, L.: Spreading in a shifting environment modeled by the diffusive logistic equation with a free boundary. J. Dyn. Differ. Equ. (2015). https://doi.org/10.1007/s10884-017-9614-2

    Google Scholar 

  • Fang, J., Lou, Y., Wu, J.: Can pathogen spread keep pace with its host invasion? SIAM J. Appl. Math. 76, 1633–1657 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Fang, J., Yu, X., Zhao, X.-Q.: Traveling waves and spreading speeds for time-space periodic monotone systems. J. Funct. Anal. 272, 4222–4262 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Gonzalez, P., Neilson, R.P., Lenihan, J.M., Drapek, R.J.: Global patterns in the vulnerability of ecosystems to vegetation shifts due to climate change. Glob. Ecol. Biogeogr. 19, 755–768 (2010)

    Article  Google Scholar 

  • Hu, C., Li, B.: Spatial dynamics for lattice differential equations with a shifting habitat. J. Differ. Equ. 259, 1967–1989 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Hu, H., Zou, X.: Existence of an extinction wave in the Fisher equation with a shifting habitat. Proc. Am. Math. Soc. 145, 4763–4771 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Ignat, L.I., Rossi, J.D.: A nonlocal convection–diffusion equation. J. Funct. Anal. 251, 399–437 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Lei, C., Du, Y.: Asymptotic profile of the solution to a free boundary problem arising in a shifting climate model. Discrete Contin. Dyn. Syst. Ser. B 22, 895–911 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, W.T., Sun, Y.J., Wang, Z.C.: Entire solutions in the Fisher-KPP equation with nonlocal dispersal. Nonlinear Anal. Real World Appl. 11, 2302–2313 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, B., Bewick, S., Shang, J., Fagan, W.F.: Persistence and spread of a species with a shifting habitat edge. SIAM J. Appl. Math. 5, 1397–1417 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, B., Bewick, S., Barnard, M.R., Fagan, W.F.: Persistence and spreading speeds of integro-difference equations with an expanding or contracting habitat. Bull. Math. Biol. 78, 1337–1379 (2016a)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, W.T., Wang, J.B., Zhang, L.: Entire solutions of nonlocal dispersal equations with monostable nonlinearity in space periodic habitats. J. Differ. Equ. 261, 2472–2501 (2016b)

    Article  MathSciNet  MATH  Google Scholar 

  • Liang, X., Zhao, X.-Q.: Asymptotic speeds of spread and traveling waves for monotone semiflows with applications. Commun. Pure Appl. Math. 60, 1–40 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Liang, X., Zhao, X.-Q.: Spreading speeds and traveling waves for abstract monostable evolution systems. J. Funct. Anal. 259, 857–903 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Lutscher, F., Pachepsky, E., Lewis, M.A.: The effect of dispersal patterns on stream populations. SIAM Rev. 47, 749–772 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Murray, J.D.: Mathematical Biology, II, Spatial Models and Biomedical Applications. Interdisciplinary Applied Mathematics, vol. 18, 3rd edn. Springer, New York (2003)

    Google Scholar 

  • Parr, C.L., Gray, E.F., Bond, W.J.: Cascading biodiversity and functional consequences of a global change-induced biome switch. Divers. Distrib. 18, 493–503 (2012)

    Article  Google Scholar 

  • Potapov, A.B., Lewis, M.A.: Climate and competition: The effect of moving range boundaries on habitat invasibility. Bull. Math. Biol. 66, 975–1008 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Rawal, N., Shen, W., Zhang, A.: Spreading speeds and traveling waves of nonlocal monostable equations in time and space periodic habitats. Discrete Contin. Dyn. Syst. 35, 1609–1640 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Scheffer, M., Hirota, M., Holmgren, M., Van Nes, E.H., Chapin, F.S.: Thresholds for boreal biome transitions. Proc. Natl. Acad. Sci. USA 109, 21384–21389 (2012)

    Article  Google Scholar 

  • Schumacher, K.: Traveling-front solutions for integrodifferential equations, II. In: Jaeger, W. et al. (eds.) Proceedings of a Conference on Biological Growth and Spread: Mathematical Theories and Applications, Heidelberg, Germany. Lecture Notes in Biomathematics, vol. 38, pp. 296–309. Springer, Berlin (1980a)

  • Schumacher, K.: Travelling-front solutions for integro-differential equations. I. J. Reine Angew. Math. 316, 54–70 (1980b)

    MathSciNet  MATH  Google Scholar 

  • Shen, W., Zhang, A.: Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats. J. Differ. Equ. 249, 747–795 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Shen, W., Zhang, A.: Traveling wave solutions of spatially periodic nonlocal monostable equations. Commun. Appl. Nonlinear Anal. 19, 73–101 (2012a)

    MathSciNet  MATH  Google Scholar 

  • Shen, W., Zhang, A.: Stationary solutions and spreading speeds of nonlocal monostable equations in space periodic habitats. Proc. Am. Math. Soc. 140, 1681–1696 (2012b)

    Article  MathSciNet  MATH  Google Scholar 

  • Vo, H.-H.: Persistence versus extinction under a climate change in mixed environments. J. Differ. Equ. 259, 4947–4988 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Weinberger, H.F.: Long-time behavior of a class of biological models. SIAM J. Math. Anal. 13, 353–396 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  • Weng, P., Zhao, X.-Q.: Spreading speed and traveling waves for a multi-type SIS epidemic model. J. Differ. Equ. 229, 270–296 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Yagisita, H.: Existence and nonexistence of traveling waves for a nonlocal monostable equation. Publ. Res. Inst. Math. Sci. 45, 925–953 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou, Y., Kot, M.: Discrete-time growth-dispersal models with shifting species ranges. Theor. Ecol. 4, 13–25 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

Our sincere thanks goes to Dr. Jian Fang for his helpful discussion on the construction of the subsolution for the wave profile equation (4.3). We are also grateful to two anonymous referees for their careful reading and valuable suggestions which led to an improvement of our original manuscript. W.-T. Li was partially supported by NSF of China (11671180, 11731005) and FRFCU (lzujbky-2017-ct01). J.-B. Wang would like to thank the China Scholarship Council (201606180060) for financial support during the period of his overseas study and to express his gratitude to the Department of Mathematics and Statistics, Memorial University of Newfoundland, for its kind hospitality. X.-Q. Zhao was partially supported by the NSERC of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-Bing Wang.

Additional information

Communicated by Philip K. Maini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, WT., Wang, JB. & Zhao, XQ. Spatial Dynamics of a Nonlocal Dispersal Population Model in a Shifting Environment. J Nonlinear Sci 28, 1189–1219 (2018). https://doi.org/10.1007/s00332-018-9445-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-018-9445-2

Keywords

Mathematics Subject Classification

Navigation