Skip to main content
Log in

ROOT SYSTEMS AND SYMMETRIES OF TORUS MANIFOLDS

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

We associate a root system to a finite set in a free abelian group and prove that its irreducible subsystem is of type A, B, or D. Applying this general result to a torus manifold M, where a torus manifold is a 2n-dimensional connected closed smooth manifold with a smooth effective action of an n-dimensional compact torus having a fixed point, we introduce a root system R(M) for M and show that if the torus action on M extends to a smooth action of a connected compact Lie group G, then the root system of G is a subsystem of R(M) so that any irreducible factor of the Lie algebra of G is of type A, B, or D. Moreover, we show that only type A appears if H*(M) is generated by H 2(M) as a ring. We also discuss a similar problem for a torus manifold with an invariant stable complex structure. Only type A appears in this case, too.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Cox, The homogeneous coordinate ring of a toric variety, J. Algebraic Geom. 4 (1995), no. 1, 17-50.

    MathSciNet  MATH  Google Scholar 

  2. M. W. Davis, T. Januszkiewicz, Convex polytopes, Coxeter orbifolds and torus actions, Duke Math. J. 62 (1991), 417-451.

    Article  MathSciNet  MATH  Google Scholar 

  3. T. Delzant, Hamiltoniens périodiques et image convex de l’application moment, Bull. Soc. Math. France 116 (1988), 315-339.

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Demazure, Sous-groupes algebriques de rang maximum du groupe de Cremona, Ann. Sci. Ecole Norm. Sup. 3 (1970), no. 4, 507-588.

    Article  MathSciNet  MATH  Google Scholar 

  5. W. Fulton, An Introduction to Toric Varieties, Ann. of Math. Studies, Vol. 113, Princeton Univ. Press, Princeton, NJ, 1993.

  6. A. Hattori, M. Masuda, Theory of multi-fans, Osaka J. Math. 40 (2003), 1-68.

    MathSciNet  MATH  Google Scholar 

  7. J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Graduate Texts in Math., Vol. 9, Springer-Verlag, 1972.

  8. H. Ishida, Y. Fukukawa, M. Masuda, Topological toric manifolds, Moscow Math. J. 13 (2013), 57-98.

    MathSciNet  MATH  Google Scholar 

  9. S. Kobayashi, Transformation Groups in Differential Geometry, Ergebnisse der Mathematik und Ihrer Grenzgebiete, Band 70, Springer-Verlag, New York, 1972.

  10. S. Kuroki, Characterization of homogeneous torus manifolds, Osaka J. Math. 47 (2010), no. 1, 285-299.

    MathSciNet  MATH  Google Scholar 

  11. S. Kuroki, GKM graphs induced by GKM manifolds with SU(l + 1)-symmetries. Trends in Mathematics, New Series 12 (2010), no. 1, 103-113.

    Google Scholar 

  12. S. Kuroki, Classi_cation of torus manifolds with codimension one extended actions, Transform. Groups 16 (2011), no. 2, 481{536.

  13. S. Kuroki, Equivariant cohomology distinguishes the geometric structures of toric hyperKähler manifolds, Proc. Steklov Inst. Math. 275 (2011), 251-283.

    Article  MathSciNet  MATH  Google Scholar 

  14. S. Kuroki, An Orlik-Raymond type classification of simply connected 6-dimensional torus manifolds with vanishing odd degree cohomology, Pacific J. Math. 280 (2016), no. 1, 89-114.

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Masuda, Unitary toric manifolds, multi-fans and equivariant index, Tohoku Math. J. 51 (1999), 237-265.

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Masuda, Symmetry of a symplectic toric manifold, J. Symplectic Geom. 8 (2010), no. 4, 359-380.

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Masuda, T. Panov, On the cohomology of torus manifolds, Osaka J. Math. 43 (2006), 711-746.

    MathSciNet  MATH  Google Scholar 

  18. T. Oda, Convex Bodies and Algebraic Geometry. An Introduction to the Theory of Toric Varieties, Ergeb. Math. Grenzgeb. (3), Bd. 15, Springer-Verlag, Berlin, 1988.

  19. Y. Suyama, Examples of toric manifolds which are not quasitoric manifolds, Algebr. Geom. Topol. 14 (2014), 3097-3106.

    Article  MathSciNet  MATH  Google Scholar 

  20. M. Wiemeler, On the Classification of Torus Manifolds with and without Non-Abelian Symmetries, PhD thesis, University of Fribourg, 2010.

  21. M. Wiemeler, Torus manifolds with non-abelian symmetries, Trans. Amer. Math. Soc. 364 (2012), no. 3, 1427-1487.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SHINTARÔ KUROKI.

Additional information

(SHINTARÔ KUROKI) Supported in part by JSPS KAKENHI Grant Number 15K17531, 24224002, and the JSPS Strategic Young Researcher Overseas Visits Program for Accelerating Brain Circulation “Deepening and Evolution of Mathematics and Physics, Building of International Network Hub based on OCAMI”, and the bilateral program between Japan and Russia: “Topology and geometry of torus actions and combinatorics of orbit quotients”.

(MIKIYA MASUDA) Supported by Grant-in-Aid for Scientific Research 25400095.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

KUROKI, S., MASUDA, M. ROOT SYSTEMS AND SYMMETRIES OF TORUS MANIFOLDS. Transformation Groups 22, 453–474 (2017). https://doi.org/10.1007/s00031-016-9387-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-016-9387-4

Keywords

Navigation