Skip to main content
Log in

Torus Actions of Complexity 1 and Their Local Properties

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

We consider an effective action of a compact (n − 1)-torus on a smooth 2n-manifold with isolated fixed points. We prove that under certain conditions the orbit space is a closed topological manifold. In particular, this holds for certain torus actions with disconnected stabilizers. There is a filtration of the orbit manifold by orbit dimensions. The subset of orbits of dimensions less than n − 1 has a specific topology, which is axiomatized in the notion of a sponge. In many cases the original manifold can be recovered from its orbit manifold, the sponge, and the weights of tangent representations at fixed points. We elaborate on the introduced notions using specific examples: the Grassmann manifold G4,2, the complete flag manifold F3, and quasitoric manifolds with an induced action of a subtorus of complexity 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ayzenberg, “Topological model for h″ vectors of simplicial manifolds,” Bol. Soc. Mat. Mex., Ser. 3, 23 (1), 413–421 (2017); arXiv: 1502.05499 [math.AT].

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Ayzenberg, “Space of isospectral periodic tridiagonal matrices,” arXiv: 1803.11433 [math.AT].

  3. A. Bialynicki-Birula, “Some theorems on actions of algebraic groups,” Ann. Math., Ser. 2, 98 (3), 480–497 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  4. G. E. Bredon, Introduction to Compact Transformation Groups (Academic, New York, 1972), Pure Appl. Math. 46.

    MATH  Google Scholar 

  5. V. M. Buchstaber and T. E. Panov, Toric Topology (Am. Math. Soc., Providence, RI, 2015), Math. Surv. Monogr. 204.

    Book  MATH  Google Scholar 

  6. V. M. Buchstaber and N. Ray, “An invitation to toric topology: Vertex four of a remarkable tetrahedron,” in Toric Topology: Int. Conf., Osaka, 2006 (Am. Math. Soc., Providence, RI, 2008), Contemp. Math. 460, pp. 1–27.

    Google Scholar 

  7. V. M. Buchstaber “(jointly with S. Terzić), “(2n, k)-manifolds and applications,” in “Okounkov bodies and applications: Abstr. Workshop, May 25–31, 2014,” Oberwolfach Rep. 11 (2), 1459–1513 (2014), pp. 1469–1472.

    Google Scholar 

  8. V. M. Buchstaber and S. Terzić, “Topology and geometry of the canonical action of T 4 on the complex Grassmannian G4,2 and the complex projective space CP5,” Moscow Math. J. 16 (2), 237–273 (2016); arXiv: 1410.2482 [math.AT].

    MathSciNet  MATH  Google Scholar 

  9. V. M. Buchstaber and S. Terzić, “Toric topology of the complex Grassmann manifolds,” arXiv: 1802.06449 [math.AT].

  10. Ph. T. Church and K. Lamotke, “Almost free actions on manifolds,” Bull. Aust. Math. Soc. 10, 177–196 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  11. M. W. Davis and T. Januszkiewicz, “Convex polytopes, Coxeter orbifolds and torus actions,” Duke Math. J. 62 (2), 417–451 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  12. R. Fintushel, “Classification of circle actions on 4-manifolds,” Trans. Am. Math. Soc. 242, 377–390 (1978).

    MathSciNet  MATH  Google Scholar 

  13. M. Goresky, R. Kottwitz, and R. MacPherson, “Equivariant cohomology, Koszul duality, and the localization theorem,” Invent. Math. 131 (1), 25–83 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  14. Y. Karshon and S. Tolman, “Classification of Hamiltonian torus actions with two-dimensional quotients,” Geom. Topol. 18 (2), 669–716 (2014); arXiv: 1109.6873 [math.SG].

    Article  MathSciNet  MATH  Google Scholar 

  15. Y. Karshon (joint with S. Tolman), “Topology of complexity one quotients,” Talk at the Int. Conf. “Algebraic Topology, Combinatorics, and Mathematical Physics” on occasion of V. Buchstaber’s 75th birthday (Moscow, May 2018), http://www.mathnet.ru/present20512.

    Google Scholar 

  16. M. Masuda and T. Panov, “On the cohomology of torus manifolds,” Osaka J. Math. 43 (3), 711–746 (2006); arXiv: math/0306100 [math.AT].

    MathSciNet  MATH  Google Scholar 

  17. P. Orlik and F. Raymond, “Actions of the torus on 4-manifolds. I,” Trans. Am. Math. Soc. 152, 531–559 (1970).

    MathSciNet  MATH  Google Scholar 

  18. P. Orlik and F. Raymond, “Actions of the torus on 4-manifolds. II,” Topology 13, 89–112 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  19. D. A. Timashëv, “G-varieties of complexity 1,” Russ. Math. Surv. 51 (3), 567–568 (1996) [transl. from Usp. Mat. Nauk 51 (3), 213–214 (1996)].

    Article  MATH  Google Scholar 

  20. D. A. Timashev, “Classification of G-varieties of complexity 1,” Izv. Math. 61 (2), 363–397 (1997) [transl. from Izv. Ross. Akad. Nauk, Ser. Mat. 61 (2), 127–162 (1997)].

    Google Scholar 

  21. E. B. Vinberg, “Discrete linear groups generated by reflections,” Izv. Math. 5 (5), 1083–1119 (1971) [transl. from Izv. Akad. Nauk SSSR, Ser. Mat. 35 (5), 1072–1112 (1971)].

    Article  MATH  Google Scholar 

  22. T. Yoshida, “Local torus actions modeled on the standard representation,” Adv. Math. 227 (5), 1914–1955 (2011); arXiv: 0710.2166 [math.GT].

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton A. Ayzenberg.

Additional information

Published in Russian in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2018, Vol. 302, pp. 23–40.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayzenberg, A.A. Torus Actions of Complexity 1 and Their Local Properties. Proc. Steklov Inst. Math. 302, 16–32 (2018). https://doi.org/10.1134/S0081543818060020

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543818060020

Navigation