Skip to main content

Maxwell’s Equations: Continuous and Discrete

  • Chapter
Computational Electromagnetism

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 2148))

Abstract

This is an introduction to the spatial Galerkin discretization of Maxwell’s equations on bounded domains covering both modeling in the framework of exterior calculus, the construction of discrete differential forms, and a glimpse of a priori discretization error estimates. The presentation focuses on central ideas, skipping technical details for the sake of lucid presentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 44.99
Price excludes VAT (USA)
Softcover Book
USD 59.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Ainsworth, J. Coyle, Hierarchic finite element bases on unstructured tetrahedral meshes. Int. J. Numer. Methods Eng. 58, 2103–2130 (2003)

    Article  MathSciNet  Google Scholar 

  2. M. Ainsworth, G. Andriamaro, O. Davydov, A Bernstein-Bézier basis for arbitrary order Raviart-Thomas finite elements. Report NI12079-AMM, Newton Institute, Cambridge (2012)

    Google Scholar 

  3. C. Amrouche, C. Bernardi, M. Dauge, V. Girault, Vector potentials in three-dimensional nonsmooth domains. Math. Methods Appl. Sci. 21, 823–864 (1998)

    Article  MathSciNet  Google Scholar 

  4. D. Arnold, A. Logg, Periodic table of the finite elements. SIAM News 47(9) (2014)

    Google Scholar 

  5. D. Arnold, R. Falk, R. Winther, Finite element exterior calculus, homological techniques, and applications. Acta Numer. 15, 1–155 (2006)

    Article  MathSciNet  Google Scholar 

  6. D. Arnold, D. Boffi, F. Bonizzoni, Finite element differential forms on curvilinear cubic meshes and their approximation properties. Preprint (2014). arXiv:1212.6559v4 [math.NA]

    Google Scholar 

  7. B. Auchmann, S. Kurz, de Rham currents in discrete electromagnetism. COMPEL 26, 743–757 (2007)

    Google Scholar 

  8. D. Baldomir, P. Hammond, Geometry of Electromagnetic Systems (Clarendon Press, Oxford, 1996)

    Google Scholar 

  9. M. Bergot, M. Duruflé, Approximation of \(H(\mathop{\mathrm{div}}\nolimits )\) with high-order optimal finite elements for pyramids, prisms and hexahedra. Commun. Comput. Phys. 14, 1372–1414 (2013)

    MathSciNet  Google Scholar 

  10. M. Bergot, M. Duruflé, High-order optimal edge elements for pyramids, prisms and hexahedra. J. Comput. Phys. 232, 189–213 (2013)

    Article  MathSciNet  Google Scholar 

  11. D. Boffi, F. Brezzi, M. Fortin, Mixed Finite Element Methods and Applications. Springer Series in Computational Mathematics, vol. 44 (Springer, Heidelberg, 2013)

    Google Scholar 

  12. A. Bossavit, Computational Electromagnetism: Variational Formulation, Complementarity, Edge Elements. Electromagnetism Series, vol. 2 (Academic, San Diego, 1998)

    Google Scholar 

  13. A. Bossavit, On the geometry of electromagnetism I: affine space. J. Jpn. Soc. Appl. Electromagn. Mech. 6, 17–28 (1998)

    Google Scholar 

  14. A. Bossavit, On the geometry of electromagnetism II: geometrical objects. J. Jpn. Soc. Appl. Electromagn. Mech. 6, 114–123 (1998)

    Google Scholar 

  15. A. Bossavit, On the geometry of electromagnetism III: integration, Stokes’, Faraday’s law. J. Jpn. Soc. Appl. Electromagn. Mech. 6, 233–240 (1998)

    Google Scholar 

  16. A. Bossavit, On the geometry of electromagnetism IV: “Maxwell’s house”. J. Jpn. Soc. Appl. Electromagn. Mech. 6, 318–326 (1998)

    Google Scholar 

  17. A. Bossavit, On the Lorenz gauge. COMPEL 18, 323–336 (1999)

    Article  Google Scholar 

  18. A. Bossavit, Applied Differential Geometry: A Compendium. Unpublished Lecture Notes (2002)

    Google Scholar 

  19. A. Bossavit, Discretization of electromagnetic problems: the “generalized finite differences”, in Numerical Methods in Electromagnetics, ed. by W. Schilders, W. ter Maten. Handbook of Numerical Analysis, vol. XIII (Elsevier, Amsterdam, 2005), pp. 443–522

    Google Scholar 

  20. A. Buffa, R. Hiptmair, Galerkin boundary element methods for electromagnetic scattering, in Topics in Computational Wave Propagation: Direct and Inverse Problems, ed. by M. Ainsworth, P. Davis, D. Duncan, P. Martin, B. Rynne. Lecture Notes in Computational Science and Engineering, vol. 31 (Springer, Berlin, 2003), pp. 83–124

    Google Scholar 

  21. W. Burke, Applied Differential Geometry (Cambridge University Press, Cambridge, 1985)

    Book  Google Scholar 

  22. H. Cartan, Formes Différentielles (Hermann, Paris, 1967)

    Google Scholar 

  23. S.H. Christiansen, R. Winther, Smoothed projections in finite element exterior calculus. Math. Comput. 77, 813–829 (2008)

    Article  MathSciNet  Google Scholar 

  24. P. Ciarlet, The Finite Element Method for Elliptic Problems. Studies in Mathematics and Its Applications, vol. 4 (North-Holland, Amsterdam, 1978)

    Google Scholar 

  25. P. Ciarlet Jr., J. Zou, Fully discrete finite element approaches for time-dependent Maxwell equations. Numer. Math. 82, 193–219 (1999)

    Article  MathSciNet  Google Scholar 

  26. D. Colton, R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory. Applied Mathematical Sciences, vol. 93, 2nd edn. (Springer, Heidelberg, 2013)

    Google Scholar 

  27. M. Costabel, A. McIntosh, On Bogovskii and regularized Poincaré integral operators for de Rham complexes on Lipschitz domains. Math. Z. 265, 297–320 (2010)

    Article  MathSciNet  Google Scholar 

  28. L. Evans, Partial Differential Equations. Graduate Studies in Mathematics, vol. 19 (American Mathematical Society, Providence, 1998)

    Google Scholar 

  29. R.S. Falk, R. Winther, Local bounded cochain projection. Preprint (2012). arXiv:1211.5893

    Google Scholar 

  30. R.S. Falk, R. Winther, Double complexes and local cochain projections. Numer. Methods Partial Differ. Equ. 31, 541–551 (2015)

    Article  MathSciNet  Google Scholar 

  31. T. Frankel, The Geometry of Physics, 2nd edn. (Cambridge University Press, Cambridge, 2004)

    Google Scholar 

  32. R. Hiptmair, Canonical construction of finite elements. Math. Comput. 68, 1325–1346 (1999)

    Article  MathSciNet  Google Scholar 

  33. R. Hiptmair, Discrete Hodge operators. Numer. Math. 90, 265–289 (2001)

    Article  MathSciNet  Google Scholar 

  34. R. Hiptmair, Higher order Whitney forms, in Geometric Methods for Computational Electromagnetics, ed. by F. Teixeira. Progress in Electromagnetics Research, vol. 32 (EMW Publishing, Cambridge, 2001), pp. 271–299

    Google Scholar 

  35. R. Hiptmair, Finite elements in computational electromagnetism. Acta Numer. 11, 237–339 (2002)

    Article  MathSciNet  Google Scholar 

  36. R. Hiptmair, C. Schwab, Natural boundary element methods for the electric field integral equation on polyhedra. SIAM J. Numer. Anal. 40, 66–86 (2002)

    Article  MathSciNet  Google Scholar 

  37. S. Kurz, B. Auchmann, Differential forms and boundary integral equations for Maxwell-type problems, in Fast Boundary Element Methods in Engineering and Industrial Applications, ed. by U. Langer, M. Schanz, O. Steinbach, W.L. Wendland. Lecture Notes in Applied and Computational Mechanics, vol. 63 (Springer, Berlin/Heidelberg, 2012), pp. 1–62

    Google Scholar 

  38. S. Lang, Differential and Riemannian Manifolds. Graduate Texts in Mathematics, vol. 160 (Springer, New York, 1995)

    Google Scholar 

  39. J.M. Lee, Manifolds and Differential Geometry. Graduate Studies in Mathematics, vol. 107 (American Mathematical Society, Providence, 2009)

    Google Scholar 

  40. P. Monk, Finite Element Methods for Maxwell’s Equations (Clarendon Press, Oxford, 2003)

    Book  Google Scholar 

  41. N. Nigam, J. Phillips, High-order conforming finite elements on pyramids. IMA J. Numer. Anal. 32, 448–483 (2012)

    Article  MathSciNet  Google Scholar 

  42. P. Oswald, Multilevel Finite Element Approximation. Teubner Skripten zur Numerik (B.G. Teubner, Stuttgart, 1994)

    Google Scholar 

  43. F. Rapetti, High-order edge elements on simplicial meshes. M2AN Math. Model. Numer. Anal. 41(6), 1001–1020 (2007)

    Google Scholar 

  44. M. Renardy, R.C. Rogers, An Introduction to Partial Differential Equations. Texts in Applied Mathematics, vol. 13, 2nd edn. (Springer, New York, 2004)

    Google Scholar 

  45. S. Sauter, C. Schwab, Boundary Element Methods. Springer Series in Computational Mathematics, vol. 39 (Springer, Heidelberg, 2010)

    Google Scholar 

  46. J. Schöberl, Commuting quasi-interpolation operators for mixed finite elements. Preprint ISC-01-10-MATH, Texas A&M University, College Station (2001)

    Google Scholar 

  47. T. Tarhasaari, L. Kettunen, A. Bossavit, Some realizations of a discrete Hodge: a reinterpretation of finite element techniques. IEEE Trans. Magn. 35, 1494–1497 (1999)

    Article  Google Scholar 

  48. S. Zaglmayr, High order finite element methods for electromagnetic field computation, Ph.D. thesis, Johannes Kepler Universität Linz, 2006

    Google Scholar 

  49. J. Zhao, Analysis of finite element approximation for time-dependent Maxwell problems. Math. Comput. 73, 1089–1105 (2004)

    Article  Google Scholar 

  50. L. Zhong, S. Shu, G. Wittum, J. Xu, Optimal error estimates for Nedelec edge elements for time-harmonic Maxwell’s equations. J. Comput. Math. 27, 563–572 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Hiptmair .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hiptmair, R. (2015). Maxwell’s Equations: Continuous and Discrete. In: Bermúdez de Castro, A., Valli, A. (eds) Computational Electromagnetism. Lecture Notes in Mathematics(), vol 2148. Springer, Cham. https://doi.org/10.1007/978-3-319-19306-9_1

Download citation

Publish with us

Policies and ethics