Skip to main content

Abstract

The relation between physics, its description in terms of partial differential equations and geometry is explored in this paper. Geometry determines the correct weak formulation in finite element methods and also dictates which basis functions should be employed to obtain discrete well-posedness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 129.00
Price excludes VAT (USA)
Softcover Book
USD 169.99
Price excludes VAT (USA)
Hardcover Book
USD 169.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Arnold, R. Falk & R. Winther, Finite element exterior calculus, homological techniques, and applications, Acta Numerica,15, pp. 1–155, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  2. D. Arnold, R. Falk & R. Winther, Finite element exterior calculus: from Hodge theory to numerical stability, Bull. Amer. Math. Soc., 47, pp. 281–354, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  3. D. Arnold & G. Awanou, Finite element differential forms on cubical meshes, Arxiv preprint math/1204.2595, to appear in: Mathematics of Computation, 2013. http://arxiv.org/abs/1204.2595

  4. P. Bochev & J. Hyman, Principles of mimetic discretizations of differential operators, IMA Volumes In Mathematics and its Applications, Springer, 142, pp. 89–114, 2006.

    Article  MathSciNet  Google Scholar 

  5. P. Bochev, A discourse on variational and geometric aspects of stability of discretizations, in VKI Lecture Series: 33rd computational fluid dynamics course - novel methods for solving convection dominated systems March 24–28, 2003.

    Google Scholar 

  6. A.Bossavit, Discretization of electromagnetic problems in Handbook of Numerical Analysis, Vol. 13, Elsevier, pp. 105–197, 2005.

    Google Scholar 

  7. A. Bossavit & F. Rapetti, Whitney elements, from manifolds to fields, proceedings ICOSAHOM 2012, 2013.

    Google Scholar 

  8. F. Brezzi & A. Buffa, Innovative mimetic discretizations for electromagnetic problems, Journal of Computational and Applied Mathematics, 234, pp. 1980–1987, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  9. F. Brezzi, A. Buffa & K. Lipnikov, Mimetic finite differences for elliptic problems, Mathematical Modelling and Numerical Analysis, 43, pp. 277–296, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  10. F. Brezzi & M. Fortin, Mixed and Hybrid Finite Element Methods, Springer Verlag, 1991.

    Google Scholar 

  11. A. Buffa, G. Sangalli & R. Vázquez, Isogeometric analysis in electromagnetics: B-splines approximation, Computer Methods in Applied Mechanics and Engineering 199 (17–20), pp. 1143–1152, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Desbrun, A. Hirani, M. Leok, J. Marsden, Discrete exterior calculus, Arxiv preprint math/0508341, 2005.

    Google Scholar 

  13. H. Flanders, Differential forms with applications to the physical sciences, Dover Publications, New York, 1989.

    MATH  Google Scholar 

  14. Th. Frankel, The Geometry of Physics. An Introduction. 2nd edition, Cambridge University Press, 2011.

    Google Scholar 

  15. J.A. Evans & T.J.R. Hughes, Isogeometric divergence-conforming B-splines for the unsteady Navier-Stokes equations, Journal of Computational Physics 241, pp. 141–167, 2013.

    Article  Google Scholar 

  16. J.A. Evans & T.J.R. Hughes, Isogeometric divergence-conforming B-splines for the Darcy-Stokes-Brinkman equations, Mathematical Models and Methods in Applied Sciences 23 (4), pp. 671–741, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  17. E.S. Gawlik, P. Mullen, D. Pavlov, J.E. Marsden & M. Desbrun, Geometric, variational discretization of continuum theories, Physica D: Nonlinear Phenomena 240 (21), pp. 1724–1760, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  18. M.I. Gerritsma, Edge functions for spectral element methods, Spectral and High Order Methods for Partial differential equations, Eds J.S. Hesthaven & E.M. Rønquist, Lecture Notes in Computational Science and Engineering, 76, pp. 199–207, 2011.

    Google Scholar 

  19. M.I. Gerritsma, An Introduction to a Compatible Spectral Discretization Method, Mechanics of Advanced Materials and Structures, 19 pp. 48–67, 2012.

    Article  Google Scholar 

  20. J. Harrison, Geometric Hodge star operator with applications to the theorems of Gauss and Green, Math. Proc. Camb Phil. Soc., 140, pp. 135–155, 2006.

    Article  MATH  Google Scholar 

  21. R.R. Hiemstra, R.H.M. Huijsmans & M.I. Gerritsma, High order gradient, curl and divergence conforming spaces, with an application to compatible IsoGeometric Analysis, submitted to JCP, 2012.

    Google Scholar 

  22. R.R. Hiemstra, & M.I. Gerritsma, High order methods with exact conservation properties, proceedings ICOSAHOM 2012

    Google Scholar 

  23. R. Hiptmair, Discrete hodge operators, Numerische Mathematik, 90, pp. 265–289, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  24. R. Hiptmair, Higher order Whitney forms, Geometric Methods for Computational Electromagnetics, 42, pp. 271–299, 2001.

    Google Scholar 

  25. A.N. Hirani, Discrete Exterior Calculus, PhD thesis, California Institute of Technology, 2003. http://thesis.library.caltech.edu/1885/3/thesis_hirani.pdf

  26. A.N. Hirani, K. Kalyanaraman & E.B.van der Zee, Delaunay Hodge star, CAD Computer Aided Design 45 (2), pp. 540–544, 2013.

    Google Scholar 

  27. J.M. Hyman & J.C. Scovel, Deriving mimetic difference approximations to differential operators using algebraic topology, Math. Comp. 52, No.186, pp. 471–494, 1989.

    Google Scholar 

  28. J.M. Hyman, M. Shashkov & S. Steinberg, The numerical solution of diffusion problems in strongly heterogeous non-isotropic materials, Journal of Computational Physics, 132, 1, pp. 30–148, 1997.

    Article  MathSciNet  Google Scholar 

  29. J.J. Kreeft & M.I. Gerritsma, Mixed Mimetic Spectral Element Method for Stokes Flow: A Pointwise Divergence-Free Solution, Journal of Computational Physics, 240, pp. 284–309, 2013..

    Article  Google Scholar 

  30. J.J. Kreeft & M.I. Gerritsma, A priori error estimates for compatible spectral discretization of the Stokes problem for all admissible boundary conditions, arXiv preprint arXiv:1206.2812, 2012. http://arxiv.org/abs/1206.2812

  31. J.J. Kreeft & M.I. Gerritsma, Higher-order compatible discretization on hexahedrals, proceedings ICOSAHOM 2012. http://arxiv.org/abs/1304.7018

  32. J.J. Kreeft, A. Palha & M.I. Gerritsma, Mimetic framework on curvilinear quadrilaterals of arbitrary order, Arxiv preprint arXiv:1111.4304, pp. 1–69, 2011. http://arxiv.org/abs/1111.4304

  33. C. Mattiussi, The finite volume, finite element, and finite difference methods as numerical methods for physical field problems, Advances in Imaging and electron physics, 133, pp. 1–147, 2000.

    Article  Google Scholar 

  34. A. Palha, P. Rebelo, R.R. Hiemstra, J.J. Kreeft & M.I. Gerritsma, Physics-compatible discretization techniques on single and dual grids, with application to the Poisson equation of volume forms, submitted to JCP, http://arxiv.org/abs/1304.6908, 2012.

  35. A. Palha, P. Rebelo & M.I. Gerritsma, Mimetic Spectral Element advection, proceedings ICOSAHOM 2012. http://arxiv.org/abs/1304.6926

  36. D. Pavlov, P. Mullen, Y. Tong, E. Kanso, J.E. Marsden & M. Desbrun, Structure-preserving discretization of incompressible fluids, Physica D: Nonlinear Phenomena 240 (6), pp. 443–458, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  37. J. Blair Perot, Conservation properties of unstructured staggered mesh schemes, Journal of Computational Physics, 159, pp. 58–89, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  38. J. Blair Perot, Discrete Conservation Properties of Unstructured Mesh Schemes, Annual Review of Fluid Mechanics, Annual Reviews, 43, pp. 299–318, 2011.

    Article  Google Scholar 

  39. F. Rapetti & A. Bossavit, Whitney forms of higher degree, SIAM J. Numer. Anal., 47, pp. 2369–2386, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  40. F. Rapetti & A. Bossavit, Geometrical localisation of the degrees of freedom for Whitney elements of higher order, IET Science, Measurement and Technology 1 (1), pp. 63–66, 2007.

    Article  Google Scholar 

  41. P. Rebelo, A. Palha & M.I. Gerritsma, Mixed Mimetic Spectral Element method applied to Darcy’s problem, proceedings ICOSAHOM 2012 http://arxiv.org/abs/1304.7147

  42. N. Robidoux & S. Steinberg, A discrete vector calculus in tensor grids, Computational Methods in Applied Mathematics 11 (1), pp. 23–66, 2011.

    Article  MathSciNet  Google Scholar 

  43. Tonti, E, On the formal structure of physical theories, preprint of the Italian National Research Council, 1975. http://www.dic.univ.trieste.it/perspage/tonti/DEPOSITO/CNR.pdf

  44. D. Toshniwal, R.H.M. Huijsmans & M.I. Gerritsma, A Geometric approach towards momentum conservation, proceedings ICOSAHOM 2012. http://arxiv.org/abs/1304.6991

Download references

Acknowledgements

The authors want to thank the reviewers for their critical remarks and useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Gerritsma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Gerritsma, M., Hiemstra, R., Kreeft, J., Palha, A., Rebelo, P., Toshniwal, D. (2014). The Geometric Basis of Numerical Methods. In: Azaïez, M., El Fekih, H., Hesthaven, J. (eds) Spectral and High Order Methods for Partial Differential Equations - ICOSAHOM 2012. Lecture Notes in Computational Science and Engineering, vol 95. Springer, Cham. https://doi.org/10.1007/978-3-319-01601-6_2

Download citation

Publish with us

Policies and ethics