Numero triangolare centrato

Da Wikipedia, l'enciclopedia libera.
Vai alla navigazione Vai alla ricerca

Un numero triangolare centrato è un numero poligonale centrato che rappresenta un triangolo con un punto al centro e tutti gli altri attorno, su livelli successivi posti ai lati di triangoli equilateri.

L'immagine seguente mostra la costruzione dei numeri triangolari centrati utilizzando le figure associate: a ogni passaggio, il triangolo precedente (mostrato in rosso) viene circondato da uno strato triangolare di nuovi punti (in blu):

construction

L'-esimo numero triangolare centrato è dato dalla formula:

I primi numeri triangolari centrati sono:

1, 4, 10, 19, 31, 46, 64, 85, 109, 136, 166, 199, 235, 274, 316, 361, 409, 460, 514, 571, 631, 694, 760, 829, 901, 976, 1054, 1135, 1219, 1306, 1396, 1489, 1585, 1684, 1786, 1891, 1999, 2110, 2224, 2341, 2461, 2584, 2710, 2839, 2971[1].

Fra questi sono anche primi i numeri: 19, 31, 109, 199, 409, 571, 631, 829, 1489, 1999, 2341, 2971. Ogni numero triangolare centrato dal 10 in poi è la somma di tre numeri triangolari regolari consecutivi. Inoltre, ogni numero triangolare centrato ha resto 1 se diviso per tre e il quoziente è il numero triangolare regolare precedente.

Sommando i primi numeri triangolari centrati si ottiene la costante di un quadrato magico di lato (con ).

  1. ^ (EN) Sequenza A005448, su On-Line Encyclopedia of Integer Sequences, The OEIS Foundation., ...

Voci correlate

[modifica | modifica wikitesto]

Collegamenti esterni

[modifica | modifica wikitesto]
  Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica