Skip to main content
Log in

Nonlinear size-dependent dynamic instability and local bifurcation of FG nanotubes transporting oscillatory fluids

输运振荡流体FG纳米管的非线性尺寸相关动力失稳和局部分岔

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Oscillation of fluid flow may cause the dynamic instability of nanotubes, which should be valued in the design of nanoelectromechanical systems. Nonlinear dynamic instability of the fluid-conveying nanotube transporting the pulsating harmonic flow is studied. The nanotube is composed of two surface layers made of functionally graded materials and a viscoelastic interlayer. The nonlocal strain gradient model coupled with surface effect is established based on Gurtin-Murdoch’s surface elasticity theory and nonlocal strain gradient theory. Also, the size-dependence of the nanofluid is established by the slip flow model. The stability boundary is obtained by the two-step perturbation-Galerkin truncation-Incremental harmonic balance (IHB) method and compared with the linear solutions by using Bolotin’s method. Further, the Runge-Kutta method is utilized to plot the amplitude-frequency bifurcation curves inside/outside the region. Results reveal the influence of nonlocal stress, strain gradient, surface elasticity and slip flow on the response. Results also suggest that the stability boundary obtained by the IHB method represents two bifurcation points when sweeping from high frequency to low frequency. Differently, when sweeping to high frequency, there exists a hysteresis boundary where amplitude jump will occur.

摘要

流体流动的振荡可能会引起纳米管的动态失稳, 这在纳米机电系统的设计中应得到重视. 文章研究了输流纳米管在传输谐波脉动流时的非线性动力失稳. 纳米管由两个功能梯度材料表面层和一个黏弹性夹层组成. 基于Gurtin-Murdoch的表面弹性理论和非局部应变梯度理论, 建立了考虑表面效应的非局部应变梯度模型. 此外, 纳米流体的尺寸依赖性由滑移流模型建立. 采用两步摄动-伽辽金截断-增量谐波平衡(IHB)方法得到了稳定边界, 并与采用Bolotin方法得到的线性解进行了比较. 此外, 采用龙格-库塔法绘制了稳定边界内外的幅频分岔曲线. 结果揭示了非局部应力、 应变梯度、 表面弹性和滑移流对响应的影响. 结果表明, 由IHB方法得到的稳定边界表示从高频到低频���频���的两个分岔点. 不同的是, 当从低频向高频扫频时, 存在一个迟滞边界, 在该边界处会发生振幅突跳.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. M. Sedighi, Divergence and flutter instability of magneto-thermoelastic C-BN hetero-nanotubes conveying fluid, Acta Mech. Sin. 36, 381 (2020).

    Article  MathSciNet  Google Scholar 

  2. M. R. Zarastvand, M. Ghassabi, and R. Talebitooti, Prediction of acoustic wave transmission features of the multilayered plate constructions: a review, J. Sandwich Struct. Mater. 24, 218 (2022).

    Article  Google Scholar 

  3. H. Darvishgohari, M. R. Zarastvand, R. Talebitooti, and R. Shahbazi, Hybrid control technique for vibroacoustic performance analysis of a smart doubly curved sandwich structure considering sensor and actuator layers, J. Sandwich Struct. Mater. 23, 1453 (2021).

    Article  Google Scholar 

  4. R. Ansari, R. Gholami, A. Norouzzadeh, and M. A. Darabi, Surface stress effect on the vibration and instability of nanoscale pipes conveying fluid based on a size-dependent Timoshenko beam model, Acta Mech. Sin. 31, 708 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  5. B. Hu, J. Liu, Y. Wang, B. Zhang, and H. Shen, Wave propagation in graphene reinforced piezoelectric sandwich nanoplates via high-order nonlocal strain gradient theory, Acta Mech. Sin. 37, 1446 (2021).

    Article  MathSciNet  Google Scholar 

  6. W. M. Zhang, and L. Zuo, Vibration energy harvesting: from micro to macro scale, Acta Mech. Sin. 36, 555 (2020).

    Article  MathSciNet  Google Scholar 

  7. M. H. Ghayesh, H. Farokhi, and A. Farajpour, Global dynamics of fluid conveying nanotubes, Int. J. Eng. Sci. 135, 37 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  8. F. Liang, A. Gao, X. F. Li, and W. D. Zhu, Nonlinear parametric vibration of spinning pipes conveying fluid with varying spinning speed and flow velocity, Appl. Math. Model. 95, 320 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  9. D. Zhao, J. Liu, and C. Q. Wu, Stability and local bifurcation of parameter-excited vibration of pipes conveying pulsating fluid under thermal loading, Appl. Math. Mech.-Engl. Ed. 36, 1017 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  10. Y. F. Zhang, M. H. Yao, W. Zhang, and B. C. Wen, Dynamical modeling and multi-pulse chaotic dynamics of cantilevered pipe conveying pulsating fluid in parametric resonance, Aerospace Sci. Tech. 68, 441 (2017).

    Article  Google Scholar 

  11. L. Wang, A further study on the non-linear dynamics of simply supported pipes conveying pulsating fluid, Int. J. Non-Linear Mech. 44, 115 (2009).

    Article  Google Scholar 

  12. A. R. Askarian, H. Haddadpour, R. D. Firouz-Abadi, and H. Abtahi, Nonlinear dynamics of extensible viscoelastic cantilevered pipes conveying pulsatile flow with an end nozzle, Int. J. Non-Linear Mech. 91, 22 (2017).

    Article  Google Scholar 

  13. X. Tan, and H. Ding, Parametric resonances of Timoshenko pipes conveying pulsating high-speed fluids, J. Sound Vib. 485, 115594 (2020).

    Article  Google Scholar 

  14. Q. Li, W. Liu, K. Lu, and Z. Yue, Three-dimensional parametric resonance of fluid-conveying pipes in the pre-buckling and post-buckling states, Int. J. Pressure Vessels Piping 189, 104287 (2021).

    Article  Google Scholar 

  15. T. Jiang, H. Dai, and L. Wang, Three-dimensional dynamics of fluid-conveying pipe simultaneously subjected to external axial flow, Ocean Eng. 217, 107970 (2020).

    Article  Google Scholar 

  16. L. Wang, T. L. Jiang, and H. L. Dai, Three-dimensional dynamics of supported pipes conveying fluid, Acta Mech. Sin. 33, 1065 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  17. Y. D. Li, and Y. R. Yang, Nonlinear vibration of slightly curved pipe with conveying pulsating fluid, Nonlinear Dyn 88, 2513 (2017).

    Article  Google Scholar 

  18. Q. Ni, M. Tang, Y. Wang, and L. Wang, In-plane and out-of-plane dynamics of a curved pipe conveying pulsating fluid, Nonlinear Dyn 75, 603 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  19. L. Lü, Y. Hu, X. Wang, L. Ling, and C. Li, Dynamical bifurcation and synchronization of two nonlinearly coupled fluid-conveying pipes, Nonlinear Dyn 79, 2715 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  20. V. V. Bolotin, and H. L. Armstrong, The dynamic stability of elastic systems, Am. J. Phys. 33, 752 (1965).

    Article  Google Scholar 

  21. C. Pierre, and E. H. Dowell, A study of dynamic instability of plates by an extended incremental harmonic balance method, J. Appl. Mech. 52, 693 (1985).

    Article  MATH  Google Scholar 

  22. Y. Fu, J. Zhong, X. Shao, and C. Tao, Analysis of nonlinear dynamic stability for carbon nanotube-reinforced composite plates resting on elastic foundations, Mech. Adv. Mater. Struct. 23, 1284 (2016).

    Article  Google Scholar 

  23. J. Yoon, C. Q. Ru, and A. Mioduchowski, Flow-induced flutter instability of cantilever carbon nanotubes, Int. J. Solids Struct. 43, 3337 (2006).

    Article  MATH  Google Scholar 

  24. F. Zheng, Y. Lu, and A. Ebrahimi-Mamaghani, Dynamical stability of embedded spinning axially graded micro and nanotubes conveying fluid, Waves Random Complex Media 1 (2020).

  25. H. A. Esmaeili, M. Khaki, and M. Abbasi, Dynamic instability response in nanocomposite pipes conveying pulsating ferrofluid flow considering structural damping effects, Struct. Eng. Mech. 68, 359 (2018).

    Google Scholar 

  26. M. H. Ghayesh, A. Farajpour, and H. Farokhi, Effect of flow pulsations on chaos in nanotubes using nonlocal strain gradient theory, Commun. Nonlinear Sci. Numer. Simul. 83, 105090 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  27. F. Liang, and Y. Su, Stability analysis of a single-walled carbon nanotube conveying pulsating and viscous fluid with nonlocal effect, Appl. Math. Model. 37, 6821 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  28. R. Bahaadini, M. Hosseini, and M. Amiri, Dynamic stability of viscoelastic nanotubes conveying pulsating magnetic nanoflow under magnetic field, Eng. Comput. 37, 2877 (2021).

    Article  Google Scholar 

  29. R. Bahaadini, A. R. Saidi, and M. Hosseini, Dynamic stability of fluid-conveying thin-walled rotating pipes reinforced with functionally graded carbon nanotubes, Acta Mech. 229, 5013 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  30. M. R. Zarastvand, M. Ghassabi, and R. Talebitooti, A review approach for sound propagation prediction of plate constructions, Arch. Computat. Methods Eng. 28, 2817 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  31. M. R. Zarastvand, M. Ghassabi, and R. Talebitooti, Acoustic insulation characteristics of shell structures: a review, Arch. Computat. Methods Eng. 28, 505 (2021).

    Article  MathSciNet  Google Scholar 

  32. M. H. Jalaei, A. G. Arani, and H. Nguyen-Xuan, Investigation of thermal and magnetic field effects on the dynamic instability of FG Timoshenko nanobeam employing nonlocal strain gradient theory, Int. J. Mech. Sci. 161–162, 105043 (2019).

    Article  Google Scholar 

  33. Q. Jin, Y. Ren, H. Jiang, and L. Li, A higher-order size-dependent beam model for nonlinear mechanics of fluid-conveying FG nanotubes incorporating surface energy, Compos. Struct. 269, 114022 (2021).

    Article  Google Scholar 

  34. P. Zhang, and Y. Fu, A higher-order beam model for tubes, Eur. J. Mech.-A Solids 38, 12 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  35. C. W. Lim, G. Zhang, and J. N. Reddy, A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation, J. Mech. Phys. Solids 78, 298 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  36. M. E. Gurtin, and A. Ian Murdoch, A continuum theory of elastic material surfaces, Arch. Rational Mech. Anal. 57, 291 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  37. L. Lu, X. Guo, and J. Zhao, On the mechanics of Kirchhoff and Mindlin plates incorporating surface energy, Int. J. Eng. Sci. 124, 24 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  38. J. Dai, Y. Liu, and G. Tong, Stability analysis of a periodic fluid-conveying heterogeneous nanotube system, Acta Mech. Solid Sin. 33, 756 (2020).

    Article  Google Scholar 

  39. A. Amiri, R. Talebitooti, and L. Li, Wave propagation in viscous-fluid-conveying piezoelectric nanotubes considering surface stress effects and Knudsen number based on nonlocal strain gradient theory, Eur. Phys. J. Plus 133, 1 (2018).

    Article  Google Scholar 

  40. M. Sadeghi-Goughari, and M. Hosseini, The effects of non-uniform flow velocity on vibrations of single-walled carbon nanotube conveying fluid, J. Mech. Sci. Technol. 29, 723 (2015).

    Article  Google Scholar 

  41. A. Farajpour, H. Farokhi, M. H. Ghayesh, and S. Hussain, Nonlinear mechanics of nanotubes conveying fluid, Int. J. Eng. Sci. 133, 132 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  42. Y. Ren, L. Li, Q. Jin, L. Nie, and F. Peng, Vibration and snap-through of fluid-conveying graphene reinforced composite pipes under low-velocity impact, AIAA J 59, 5091 (2021).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiru Ren  (任毅如).

Additional information

This work was supported by the National Natural Science Foundation of China (Grant No. 52172356) and Hunan Provincial Innovation Foundation for Postgraduate (Grant No. CX20210384).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, Q., Ren, Y. Nonlinear size-dependent dynamic instability and local bifurcation of FG nanotubes transporting oscillatory fluids. Acta Mech. Sin. 38, 521513 (2022). https://doi.org/10.1007/s10409-021-09075-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-021-09075-x

Keywords

Navigation