Lacking an immune system, protective shell, or mobility, sponges have developed an ability to synthesize a variety of unusual compounds for survival. C-nucleosides isolated from Caribbean Cryptotethya crypta, were the basis for the synthesis of zidovudine (AZT), aciclovir (Cyclovir), cytarabine (Depocyt), and cytarabine derivative gemcitabine (Gemzar).

Halichondria produces the eribulin (Halaven) precursor halichondrin B
Isolate Source Researched activity / Chemical description
3-Alkylpyridinium (3-AP) Haplosclerida hemolytic and cytotoxic[1]
Agosterol A anticancer[2][3]
Aplyzanzine A Aplysina sp.
Avarol Dysidea avara antitumor, antimicrobial[4] and antiviral[5] effects
Aciculitin Aciculites ciliate antifungal cyclic peptide
Discodermin Discodermia kiiensis antimicrobial tetradecapeptide
Dysidenin Lamellodysidea herbacea Highly toxic[6]
Girolline Girolline inhibits protein synthesis[7]
Halichondrin B Halichondria okadai Kadota (Miura Peninsula) precursor to eribulin (Halaven)[8][1]
Halicylindramide Halichondria antifungal peptide
Hymenamides Phakellia fusca proline-containing cyclopeptide[9]
Hymenistatin Phakellia fusca bio-active proline-containing cyclopeptide
Hyrtinadine A Hyrtios bio-active bis-indole alkaloid
Manzamines various sponge species bio-active β-carbolines
Mirabamide Siliquariaspongia mirabilis antiviral depsipeptide
Neamphamide A Neamphius huxleyi antiviral depsipeptide
Onnamide A Theonella swinhoei cytotoxic, inhibits protein synthesis[10]
Peloruside A Mycale sp. (New Zealand) cytotoxic / structurally similar to bryostatin
Phakellistatins Phakellia fusca proline-containing cyclopeptides[9]
Phoriospongin Phoriospongia and Callyspongia bilamellata nematocidal compound
Plakevulin A Plakortis DNA polymerase inhibitor
Plakoridine A Plakortis
Polydiscamide B Ircinia the first example of a nonendogenous human SNSR (human sensory neuron-specific G protein couple receptor) agonist[11]
Ptilomycalin A Monanchora arbuscula antifungal spirocyclic guanidine alkaloid / laccase and melanization inhibitor
Sceptrin Agelas conifera Antibiotic[12]
Suberedamine Suberea
Theonellamide F Theonella antimicrobial/antifungal cytotoxic bicyclic dodecapeptide[13][14]
Topsentolides Topsentia cytotoxic oxylipins[15]
Xestoquinone Xestospongia Antimalarial,[16] antifungal, and cytotoxic[17]

Semisynthetic analogs of the sponge isolate jasplakinolide, were submitted to National Cancer Institute’s Biological Evaluation Committee in 2011.

Other marine isolates

edit

Trabectedin, aplidine, didemnin, were isolated from sea squirts. Monomethyl auristatin E is a derivative of a dolastatin 10, a compound made by Dolabella auricularia. Bryostatins were first isolated from Bryozoa.

Salinosporamides are derived from Salinispora tropica. Ziconotide is derived from the sea snail Conus magus.

See also

edit

References

edit
  1. ^ SepčIć, Kristina; Guella, Graziano; Mancini, Ines; Pietra, Francesco; Serra, Mauro Dalla; Menestrina, Gianfranco; Tubbs, Kemmons; MačEk, Peter; Turk, Tom (1997). "Characterization of Anticholinesterase-Active 3-Alkylpyridinium Polymers from the Marine Sponge Reniera saraiin Aqueous Solutions". Journal of Natural Products. 60 (10): 991–996. doi:10.1021/np970292q. PMID 9358641.
  2. ^ Chen, Zhe-Sheng; Aoki, Shunji; Komatsu, Masaharu; Ueda, Kazumitsu; Sumizawa, Tomoyuki; Furukawa, Tatsuhiko; Okumura, Hiroshi; Ren, Xiao-Qin; Belinsky, Martin G.; Lee, Kun; Kruh, Gary D.; Kobayashi, Motomasa; Akiyama, Shin-ichi (2001). "Reversal of drug resistance mediated by multidrug resistance protein (MRP) 1 by dual effects of agosterol a on MRP1 function". International Journal of Cancer. 93 (1): 107–113. doi:10.1002/ijc.1290. ISSN 0020-7136. PMID 11391629.
  3. ^ Aoki, Shunji; Chen, Zhe-Sheng; Higasiyama, Kimihiko; Setiawan, I; Akiyama, Shin-ichi; Kobayashi, Motomasa (2001). "Reversing Effect of Agosterol A, a Spongean Sterol Acetate, on Multidrug Resistance in Human Carcinoma Cells". Japanese Journal of Cancer Research. 92 (8): 886–895. doi:10.1111/j.1349-7006.2001.tb01177.x. ISSN 0910-5050. PMC 5926837. PMID 11509122.
  4. ^ Asian Journal of Chemistry; Vol. 26, No. 23 (2014), 8255-8256
  5. ^ Sagar, S.; Kaur, M.; Minneman, K. P. Antiviral Lead Compounds from Marine Sponges. Marine Drugs 2010, 8 (10), 2619–2638
  6. ^ Van Sande, J; Deneubourg, F; Beauwens, R; Braekman, JC; Daloze, D; Dumont, JE (April 1990). "Inhibition of iodide transport in thyroid cells by dysidenin, a marine toxin, and some of its analogs". Molecular Pharmacology. 37 (4): 583–9. PMID 2157965.
  7. ^ Kottakota, SK; Evangelopoulos, D; Alnimr, A; Bhakta, S; McHugh, TD; Gray, M; Groundwater, PW; Marrs, EC; Perry, JD; Spilling, CD; Harburn, JJ (2012). "Synthesis and biological evaluation of purpurealidin E-derived marine sponge metabolites: aplysamine-2, aplyzanzine A, and suberedamines A and B". J Nat Prod. 75 (6): 1090–101. doi:10.1021/np300102z. PMID 22620987.
  8. ^ Towle MJ, Salvato KA, Budrow J, Wels BF, Kuznetsov G, Aalfs KK, et al. (2001). "In vitro and in vivo anticancer activities of synthetic macrocyclic ketone analogues of halichondrin B." Cancer Res. 61 (3): 1013–21. PMID 11221827.
  9. ^ a b Zhang HJ, Yi YH, Yang GJ, Hu MY, Cao GD, Yang F, et al. (2010). "Proline-containing cyclopeptides from the marine sponge Phakellia fusca". J Nat Prod. 73 (4): 650–5. doi:10.1021/np9008267. PMID 20345147.
  10. ^ Shigeki Matsunaga; Nobuhiro Fusetani; Youichi Nakao (1992). "Eight New Cytotoxic Metabolites Closely Related to Onnamide A from Two Marine Sponges of the Genus Theonella". Tetrahedron. 48 (39): 8369–8376. doi:10.1016/S0040-4020(01)86585-6.
  11. ^ Feng Y, Carroll AR, Pass DM, Archbold JK, Avery VM, Quinn RJ (2008). "Polydiscamides B-D from a marine sponge Ircinia sp. as potent human sensory neuron-specific G protein coupled receptor agonists". J Nat Prod. 71 (1): 8–11. doi:10.1021/np070094r. PMID 18163586.
  12. ^ Rodriguez, AD; Lear, MJ; La Clair, JJ (2008). "Identification of the binding of sceptrin to MreB via a bidirectional affinity protocol". J Am Chem Soc. 130 (23): 7256–7258. doi:10.1021/ja7114019. PMID 18479102.
  13. ^ Otero-González AJ, Magalhães BS, Garcia-Villarino M, López-Abarrategui C, Sousa DA, Dias SC, et al. (2010). "Antimicrobial peptides from marine invertebrates as a new frontier for microbial infection control". FASEB J. 24 (5): 1320–34. doi:10.1096/fj.09-143388. PMID 20065108.
  14. ^ Espiritu RA, Matsumori N, Murata M, Nishimura S, Kakeya H, Matsunaga S, et al. (2013). "Interaction between the marine sponge cyclic peptide theonellamide A and sterols in lipid bilayers as viewed by surface plasmon resonance and solid-state (2)H nuclear magnetic resonance". Biochemistry. 52 (14): 2410–8. doi:10.1021/bi4000854. PMID 23477347.
  15. ^ Luo X, Li F, Hong J, Lee CO, Sim CJ, Im KS, et al. (2006). "Cytotoxic oxylipins from a marine sponge Topsentia sp". J Nat Prod. 69 (4): 567–71. doi:10.1021/np0503552. PMID 16643027.
  16. ^ Laurent, Dominique; Jullian, Valérie; Parenty, Arnaud; Knibiehler, Martine; Dorin, Dominique; Schmitt, Sophie; Lozach, Olivier; Lebouvier, Nicolas; Frostin, Maryvonne; Alby, Frédéric; Maurel, Séverine; Doerig, Christian; Meijer, Laurent; Sauvain, Michel (1 July 2006). "Antimalarial potential of xestoquinone, a protein kinase inhibitor isolated from a Vanuatu marine sponge Xestospongia sp". Bioorganic & Medicinal Chemistry. 14 (13): 4477–4482. doi:10.1016/j.bmc.2006.02.026. ISSN 0968-0896. PMID 16513357.
  17. ^ Nakamura, Mitsuhiro; Kakuda, Takahiko; Qi, Jianhua; Hirata, Masayuki; Shintani, Tomoaki; Yoshioka, Yukio; Okamoto, Tetsuji; Oba, Yuichi; Nakamura, Hideshi; Ojika, Makoto (September 2005). "Novel relationship between the antifungal activity and cytotoxicity of marine-derived metabolite xestoquinone and its family". Bioscience, Biotechnology, and Biochemistry. 69 (9): 1749–1752. doi:10.1271/bbb.69.1749. ISSN 0916-8451. PMID 16195594. S2CID 11599803.