Skip to main content
Log in

Approximate solutions to fractional subdiffusion equations

  • Numerical Computation
  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract.

The work presents integral solutions of the fractional subdiffusion equation by an integral method, as an alternative approach to the solutions employing hypergeometric functions. The integral solution suggests a preliminary defined profile with unknown coefficients and the concept of penetration (boundary layer). The prescribed profile satisfies the boundary conditions imposed by the boundary layer that allows its coefficients to be expressed through its depth as unique parameter. The integral approach to the fractional subdiffusion equation suggests a replacement of the real distribution function by the approximate profile. The solution was performed with Riemann-Liouville time-fractional derivative since the integral approach avoids the definition of the initial value of the time-derivative required by the Laplace transformed equations and leading to a transition to Caputo derivatives. The method is demonstrated by solutions to two simple fractional subdiffusion equations (Dirichlet problems): 1) Time-Fractional Diffusion Equation, and 2) Time-Fractional Drift Equation, both of them having fundamental solutions expressed through the M-Wright function. The solutions demonstrate some basic issues of the suggested integral approach, among them: a) Choice of the profile, b) Integration problem emerging when the distribution (profile) is replaced by a prescribed one with unknown coefficients; c) Optimization of the profile in view to minimize the average error of approximations; d) Numerical results allowing comparisons to the known solutions expressed to the M-Wright function and error estimations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Nigmatullin, Phys. Status. Solidi. B 133, 425 (1986)

    Article  ADS  Google Scholar 

  2. Y. Li, G. Farrher, R. Kimmich, Phys. Rev. E 74, 066309 (2006)

    Article  ADS  Google Scholar 

  3. B. Berkowitz, H. Scher, S. Silliman, Water Res. Res. 36, 149 (2000)

    Article  ADS  Google Scholar 

  4. B. Berkowitz, H. Scher, Adv. Water Res. 32, 750 (2009)

    Article  Google Scholar 

  5. N. Korabel, R. Klages, A. Chechkin, I. Sokolov, V. Gonchar, Phys. Rev. E75, 1539-3755/2007/75(3)/036213(14) (2007)

    Article  MathSciNet  Google Scholar 

  6. T. Kosztolowicz, J. Memb. Sci 320, 1 (2008)

    Article  Google Scholar 

  7. A. Dokoumetzidis, P. Macheras, J. Pharmacokinet Pharmacodyn. 36, 165 (2009)

    Article  Google Scholar 

  8. B. Li, J. Wang, Phys. Rev. Lett. 91, 044301 (2003)

    Article  ADS  Google Scholar 

  9. R. Metzler, J. Klafter, Physics Report 39, 1 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  10. R. Metzler, J. Klafter, J. Physics A 37, 161 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  11. J. Trujillo, Innovation in Engineering Computational Technology, edited by B. Topping, G. Montero, R. Montenegro (Sax-Coburg Publ., 2006), p. 371

  12. I. Ardelean, G. Farrher, R. Kimmich, J. Optoelectron Adv. M. 9, 655 (2007)

    Google Scholar 

  13. J. Nakagawa, K. Sakamoto, M. Yamamoto, J. Math-for-Industry 2, 99 (2010 A-10)

    MathSciNet  MATH  Google Scholar 

  14. B. Narahari Achar, J. Hanneken, J. Mol. Liq. 114, 147 (2004)

    Article  Google Scholar 

  15. V. Djordjevic, T. Atanackovic, J. Comput. Appl. Math. 222, 701 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. T. Langlands, Physica A 367, 136 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  17. A. Pskhu, Diff. Eqs. (Russia) 39, 1509 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Y. Luchko, H. Srivastava, Comput. Math. Appl. 29, 73 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. K. Diethelm, J. Ford, A. Freed, Y. Luchko, Comput. Method. Appl. 194, 743 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. J.-H. He, Comput. Method. Appl. M. 167, 57 (1998)

    Article  MATH  Google Scholar 

  21. A. Ghorbani, Comput. Method. Appl. M. 197, 49 (2008)

    Article  MathSciNet  Google Scholar 

  22. M. Kurulay, M. Bayram, Commun. Nonlin. Sci. Num. Simul. 15, 1777 (2009)

    Article  MathSciNet  Google Scholar 

  23. A. Al-Rabtah, V. Ertürk, S. Momani, Comput. Math. Appl. 59, 1356 (2009)

    Article  Google Scholar 

  24. T. Goodman, Adv. Heat Transfer 1, 51 (1964)

    Article  Google Scholar 

  25. J. Hristov, Thermal Sci. 14, 291 (2010)

    Article  Google Scholar 

  26. J. Hristov, Thermal Sci. 14 (2010) (to be published)

  27. F. Mainardi, Chaos, Solitons Fractals 7, 1461 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. T. Kostolowicz, K. Dworecki, Mirowczynski St., Phys. Rev. E 71, 041105 (2005)

    Article  ADS  Google Scholar 

  29. K. Dworecki, A. Sleszak, B. Ornal-Wasik, S. Wasik, J. Bioch. Biophys. Meth. 62, 153 (2005)

    Article  Google Scholar 

  30. K. Dworecki, Physica A 359, 24 (2006)

    Article  ADS  Google Scholar 

  31. R. Schumer, A. Benson, M. Meerschaert, B. Baeumer, Water Res. Res. 39, 1296 (2003)

    Article  ADS  Google Scholar 

  32. J. Hristov, Thermal Sci. 13, 22 (2009)

    MathSciNet  Google Scholar 

  33. J. Hristov, Thermal Sci. 13, 49 (2009)

    MathSciNet  Google Scholar 

  34. T. Myers, Int. Comm. Heat Mass 44, 143 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Hristov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hristov, J. Approximate solutions to fractional subdiffusion equations. Eur. Phys. J. Spec. Top. 193, 229–243 (2011). https://doi.org/10.1140/epjst/e2011-01394-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2011-01394-2

Keywords

Navigation