Skip to main content
Log in

High-Order BDF Convolution Quadrature for Fractional Evolution Equations with Hyper-singular Source Term

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Anomalous diffusion in the presence or absence of an external force field is often modelled in terms of the fractional evolution equations, which can involve the hyper-singular source term. For this case, conventional time stepping methods may exhibit a severe order reduction. Although a second-order numerical algorithm is provided for the subdiffusion model with a simple hyper-singular source term \(t^{\mu }\), \(-2<\mu <-1\) in [arXiv:2207.08447], the convergence analysis remain to be proved. To fill in these gaps, we present a simple and robust smoothing method for the hyper-singular source term, where the Hadamard finite-part integral is introduced. This method is based on the smoothing/IDm-BDFk method proposed by Shi and Chen (SIAM J Numer Anal 61:2559–2579, 2023) for the subdiffusion equation with a weakly singular source term. We prove that the kth-order convergence rate can be restored for the diffusion-wave case \(\gamma \in (1,2)\) and sketch the proof for the subdiffusion case \(\gamma \in (0,1)\), even if the source term is hyper-singular and the initial data is not compatible. Numerical experiments are provided to confirm the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Akrivis, G., Chen, M., Yu, F., Zhou, Z.: The energy technique for the six-step BDF method. SIAM J. Numer. Anal. 59, 2449–2472 (2021)

    Article  MathSciNet  Google Scholar 

  2. Chen, M., Deng, W.: High order algorithms for the fractional substantial diffusion equation with truncated Lévy flights. SIAM J. Sci. Comput. 37, A890–A917 (2015)

    Article  Google Scholar 

  3. Chen, M., Jiang, S., Bu, W.: Two \(L1\) schemes on graded meshes for fractional Feynman-Kac equation. J. Sci. Comput. 88, 58 (2021)

    Article  MathSciNet  Google Scholar 

  4. Chen, M., Shi, J., Zhou, Z.: Modified \(BDF2\) schemes for subdiffusion models with a singular source term. Preprint at arXiv:2207.08447

  5. Chen, M., Yu, F., Zhou, Z.: Backward difference formulae: the energy technique for subdiffusion equation. J. Sci. Comput. 87, 94 (2021)

    Article  MathSciNet  Google Scholar 

  6. Compte, A., Metzler, R.: The generalized Cattaneo equation for the description of anomalous transport processes. J. Phys. A 30, 7277–7289 (1997)

    Article  MathSciNet  Google Scholar 

  7. Cuesta, E., Lubich, Ch., Palencia, C.: Convolution quadrature time discretization of fractional diffusion-wave equations. Math. Comp. 75, 673–696 (2006)

    Article  MathSciNet  Google Scholar 

  8. Diethelm, K.: The Analysis of Fractional Differential Equations. Springer-Verlag, Berlin (2010)

    Book  Google Scholar 

  9. Flajolet, P.: Singularity analysis and asymptotics of Bernoulli sums. Theor. Comput. Sci. 215, 371–381 (1999)

    Article  MathSciNet  Google Scholar 

  10. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Springer-Verlag, Berlin (2010)

    Google Scholar 

  11. Heymans, N., Podlubny, I.: Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives. Rheol. Acta 45, 765–771 (2006)

    Article  Google Scholar 

  12. Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods. Springer, New York (2008)

    Book  Google Scholar 

  13. Jin, B., Lazarov, R., Zhou, Z.: An analysis of the \(L1\) scheme for the subdiffusion equation with nonsmooth data. IMA J. Numer. Anal. 36, 197–221 (2016)

    MathSciNet  Google Scholar 

  14. Jin, B., Lazarov, R., Zhou, Z.: Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data. SIAM J. Sci. Comput. 38, A146–A170 (2016)

    Article  MathSciNet  Google Scholar 

  15. Jin, B., Li, B., Zhou, Z.: Correction of high-order \(BDF\) convolution quadrature for fractional evolution equations. SIAM J. Sci. Comput. 39, A3129–A3152 (2017)

    Article  MathSciNet  Google Scholar 

  16. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier Science B.V, Amsterdam (2006)

    Google Scholar 

  17. Kopteva, N.: Error analysis of an \(L2\)-type method on graded meshes for a fractional-order parabolic problem. Math. Comp. 90, 19–40 (2021)

    Article  MathSciNet  Google Scholar 

  18. Kress, R.: Numerical Analysis. Springer, New York (1998)

    Book  Google Scholar 

  19. Liao, H.-L., Li, D., Zhang, J.: Sharp error estimate of the nonuniform \(L1\) formula for linear reaction-subdiffusion equations. SIAM J. Numer. Anal. 56, 1112–1133 (2018)

    Article  MathSciNet  Google Scholar 

  20. Lubich, Ch.: Discretized fractional calculus. SIAM J. Math. Anal. 17, 704–719 (1986)

    Article  MathSciNet  Google Scholar 

  21. Lubich, Ch., Sloan, I.H., Thomée, V.: Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term. Math. Comp. 65, 1–17 (1996)

    Article  MathSciNet  Google Scholar 

  22. Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity—An Introduction to Mathematical Models. World Scientific Publishing, Hackensack (2022)

    Google Scholar 

  23. Mustapha, K.: Time-stepping discontinuous Galerkin methods for fractional diffusion problems. Numer. Math. 130, 497–516 (2015)

    Article  MathSciNet  Google Scholar 

  24. Mustapha, K.: An \(L1\) approximation for a fractional reaction-diffusion equation, a second-order error analysis over time-graded meshes. SIAM J. Numer. Anal. 58, 1319–1338 (2020)

    Article  MathSciNet  Google Scholar 

  25. Mustapha, K., McLean, W.: Superconvergence of a discontinuous Galerkin method for fractional diffusion and wave equations. SIAM J. Numer. Anal. 51, 491–515 (2013)

    Article  MathSciNet  Google Scholar 

  26. Mustapha, K., Schötzau, D.: Well-posedness of \(hp\)-version discontinuous Galerkin methods for fractional diffusion wave equations. IMA J. Numer. Anal. 34, 1426–1446 (2014)

    Article  MathSciNet  Google Scholar 

  27. Özdemir, N., Karadeniz, D.: Fractional diffusion-wave problem in cylindrical coordinates. Phys. Lett. A 372, 5968–5972 (2008)

    Article  MathSciNet  Google Scholar 

  28. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    Google Scholar 

  29. Povstenko, Y.: Fractional Termoelasticity. Springer, Cham (2015)

    Book  Google Scholar 

  30. Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382, 426–447 (2011)

    Article  MathSciNet  Google Scholar 

  31. Shen, J., Tang, T., Wang, L.-L.: Spectral Methods. Springer, Heidelberg (2011)

    Book  Google Scholar 

  32. Shi, J., Chen, M.: Correction of high-order BDF convolution quadrature for fractional Feynman-Kac equation with Lévy flight. J. Sci. Comput. 85, 28 (2020)

    Article  Google Scholar 

  33. Shi, J., Chen, M.: High-order BDF convolution quadrature for subdiffusion models with a singular source term. SIAM J. Numer. Anal. 61, 2559–2579 (2023)

    Article  MathSciNet  Google Scholar 

  34. Shi, J., Chen, M., Yan, Y., Cao, J.: Correction of high-order \(L_k\) approximation for subdiffusion. J. Sci. Comput. 93, 31 (2022)

    Article  Google Scholar 

  35. Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55, 1057–1079 (2017)

    Article  MathSciNet  Google Scholar 

  36. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer-Verlag, Berlin (2006)

    Google Scholar 

  37. Wang, K., Zhou, Z.: High-order time stepping schemes for semilinear subdiffusion equations. SIAM J. Numer. Anal. 58, 3226–3250 (2020)

    Article  MathSciNet  Google Scholar 

  38. Wang, Y., Yan, Y., Yang, Y.: Two high-order time discretization schemes for subdiffusion problems with nonsmooth data. Fract. Calc. Appl. Anal. 23, 1349–1380 (2020)

    Article  MathSciNet  Google Scholar 

  39. Yan, Y., Khan, M., Ford, N.J.: An analysis of the modified \(L1\) scheme for time-fractional partial differential equations with nonsmooth data. SIAM J. Numer. Anal. 56, 210–227 (2018)

    Article  MathSciNet  Google Scholar 

  40. Zhou, H., Tian, W.: Two time-stepping schemes for sub-diffusion equations with singular source terms. J. Sci. Comput. 92, 70 (2022)

    Article  MathSciNet  Google Scholar 

Download references

Funding

The work was supported by the Science Fund for Distinguished Young Scholars of Gansu Province under Grant No. 23JRRA1020 and the Fundamental Research Funds for the Central Universities under grant lzujbky-2023-06. The work of J.X. Cao is supported in part by the National Science Foundation of China (No. 12261058) and National Defense Basic Scientific Research of China (No. JCKY2022427C001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Minghua Chen or Jianxiong Cao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, J., Chen, M. & Cao, J. High-Order BDF Convolution Quadrature for Fractional Evolution Equations with Hyper-singular Source Term. J Sci Comput 101, 9 (2024). https://doi.org/10.1007/s10915-024-02641-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-024-02641-y

Keywords

Navigation