Computer Science > Logic in Computer Science
[Submitted on 10 Jun 2020]
Title:Checking marking reachability with the state equation in Petri net subclasses
View PDFAbstract:Although decidable, the marking reachability problem for Petri nets is well-known to be intractable in general, and a non-elementary lower bound has been recently uncovered. In order to alleviate this difficulty, various structural and behavioral restrictions have been considered, allowing to relate reachability to properties that are easier to check. For a given initial marking, the set of potentially reachable markings is described by the state equation solutions and over-approximates the set of reachable markings.
In this paper, we delineate several subclasses of weighted Petri nets in which the set of reachable markings equals the set of potentially reachable ones, a property we call the PR-R equality. When fulfilled, this property allows to use linear algebra to answer the reachability questions, avoiding a brute-force analysis of the state space. Notably, we provide conditions under which this equality holds in classes much more expressive than marked graphs, adding places with several ingoing and outgoing transitions, which allows to model real applications with shared buffers. To achieve it, we investigate the relationship between liveness, reversibility, boundedness and potential reachability in Petri nets. We also show that this equality does not hold in classes with close modeling capability when the conditions are relaxed.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
Connected Papers (What is Connected Papers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.