\`x^2+y_1+z_12^34\`
Article Contents
Article Contents

Multiple patterns formation for an aggregation/diffusion predator-prey system

  • * Corresponding author: Simone Fagioli

    * Corresponding author: Simone Fagioli 
Abstract / Introduction Full Text(HTML) Figure(9) Related Papers Cited by
  • We investigate existence of stationary solutions to an aggregation/diffusion system of PDEs, modelling a two species predator-prey interaction. In the model this interaction is described by non-local potentials that are mutually proportional by a negative constant $ -\alpha $, with $ \alpha>0 $. Each species is also subject to non-local self-attraction forces together with quadratic diffusion effects. The competition between the aforementioned mechanisms produce a rich asymptotic behavior, namely the formation of steady states that are composed of multiple bumps, i.e. sums of Barenblatt-type profiles. The existence of such stationary states, under some conditions on the positions of the bumps and the proportionality constant $ \alpha $, is showed for small diffusion, by using the functional version of the Implicit Function Theorem. We complement our results with some numerical simulations, that suggest a large variety in the possible strategies the two species use in order to interact each other.

    Mathematics Subject Classification: 35B40, 35B36, 35Q92, 45K05, 92D25.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  A possible example of a stationary solution to (3) with $ N_\rho = N_\eta = 3 $ is plotted as described in Definition 1.1

    Figure 2.  Example of mixed stationary state. Note that by symmetry $ L_\rho=-R_\rho $ and $ L_\eta=-R_\eta $

    Figure 3.  An example of a separated stationary state

    Figure 4.  In this figure, a mixed steady state is plotted by using initial data given by (70), $ \alpha = 0.1 $, $ \theta = 0.4 $. Number of particles are chosen equal to number of cells in the finite volume method, which is $ N = 71 $

    Figure 5.  A separated steady state is presented in this figure. Initial data are given by (71). The parameters are $ \alpha = 0.2 $ and $ \theta = 0.4 $ with $ N = 91 $

    Figure 6.  This figure shows how from the initial densities $ \rho_0,\eta_0 $ and $ \theta $, as in Figure 4, a transition between mixed and a sort of separated steady state appears by choosing the value of $ \alpha = 6 $. This large value of $ \alpha $ suggests an unstable behavior in the profile, see Remark 3.1

    Figure 7.  A steady state of four bumps is showed in this figure starting from initial data as in (72) with $ \alpha = 0.05 $ and $ \theta = 0.3 $. The number of particles $ N = 181 $, which is the same as number of cells

    Figure 8.  Starting from initial data as in (73) with $ \alpha = 1 $ and $ \theta = 0.3 $, we get a five bumps steady state

    Figure 9.  This last figure shows a possible existence of traveling waves by choosing initial data as in (74), $ \alpha = 1 $ and $ \theta = 0.2 $. The first two plots are performed by particles method, while the third one is done by finite volume method. Here we fix $ N = 101 $

  • [1] L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2nd edition, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2008.
    [2] J. Bedrossian, Global minimizers for free energies of subcritical aggregation equations with degenerate diffusion, Applied Mathematics Letters, 24 (2011), 1927-1932.  doi: 10.1016/j.aml.2011.05.022.
    [3] N. Bellomo and S. -Y Ha, A quest toward a mathematical theory of the dynamics of swarms, Math. Models Methods Appl. Sci., 27 (2017), 745-770. doi: 10.1142/S0218202517500154.
    [4] N. Bellomo and J. Soler, On the mathematical theory of the dynamics of swarms viewed as complex systems, Math. Models Methods Appl. Sci., 22 (2012), 1140006. doi: 10.1142/S0218202511400069.
    [5] M. Burger and M. Di Francesco, Large time behavior of nonlocal aggregation models with nonlinear diffusion, Netw. Heterog. Media, 3 (2008), 749-785.  doi: 10.3934/nhm.2008.3.749.
    [6] M. BurgerM. Di FrancescoS. Fagioli and A. Stevens, Sorting phenomena in a mathematical model for two mutually attracting/repelling species, SIAM J. Math. Anal., 50 (2018), 3210-3250.  doi: 10.1137/17M1125716.
    [7] M. Burger, M. Di Francesco and M. Franek, Stationary states of quadratic diffusion equations with long-range attraction, Commun. Math. Sci., 11 (2013), 709-738. doi: 10.4310/CMS. 2013. v11. n3. a3.
    [8] M. Burger, R. Fetecau and Y. Huang, Stationary states and asymptotic behavior of aggregation models with nonlinear local repulsion, SIAM J. Appl. Dyn. Syst., 13 (2014), 397-424. doi: 10.1137/130923786.
    [9] S. BoiV. Capasso and D. Morale, Modeling the aggregative behavior of ants of the species polyergus rufescens}, Nonlinear Anal. Real World Appl., 1 (2000), 163-176.  doi: 10.1016/S0362-546X(99)00399-5.
    [10] G. Carlier and M. Laborde, Remarks on continuity equations with nonlinear diffusion and nonlocal drifts, J. Math. Anal. Appl., 444 (2016), 1690-1702.  doi: 10.1016/j.jmaa.2016.07.061.
    [11] V. CalvezJ. A. Carrillo and F. Hoffmann, Equilibria of homogeneous functionals in the fair-competition regime, Nonlinear Anal., 159 (2017), 85-128.  doi: 10.1016/j.na.2017.03.008.
    [12] J. A. CarrilloA. Chertock and Y. Huang, A finite-volume method for nonlinear nonlocal equations with a gradient flow structure, Commun. Comput. Phys., 17 (2015), 233-258.  doi: 10.4208/cicp.160214.010814a.
    [13] J. A. CarrilloY. Huang and M. Schmidtchen, Zoology of a nonlocal cross-diffusion model for two species, SIAM J. Appl. Math., 78 (2018), 1078-1104.  doi: 10.1137/17M1128782.
    [14] J. A. Carrillo and G. Toscani, Wasserstein metric and large-time asymptotics of nonlinear diffusion equations., New Trends in Mathematical Physics, World Sci. Publ., Hackensack, NJ, 2004, 234-244.
    [15] Y. Chen and T. Kolokolnikov, A minimal model of predator-swarm interactions, J. R. Soc. Interface, 11 (2014). doi: 10.1098/rsif. 2013.1208.
    [16] R. ChoksiR. C. Fetecau and I. Topaloglu, On minimizers of interaction functionals with competing attractive and repulsive potentials, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32 (2015), 1283-1305.  doi: 10.1016/j.anihpc.2014.09.004.
    [17] M. CicaleseL. De LucaM. Novaga and M. Ponsiglione, Ground states of a two phase model with cross and self attractive interactions, SIAM J. Math. Anal., 48 (2016), 3412-3443.  doi: 10.1137/15M1033976.
    [18] B. Düring, P. Markowich, J. -F. Pietschmann and M. -T. Wolfram, Boltzmann and Fokker-Planck equations modelling opinion formation in the presence of strong leaders, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 465 (2009), 3687-3708. doi: 10.1098/rspa. 2009.0239.
    [19] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985. doi: 10.1007/978-3-662-00547-7.
    [20] M. Di FrancescoA. Esposito and S. Fagioli, Nonlinear degenerate cross-diffusion systems with nonlocal interaction, Nonlinear Anal., 169 (2018), 94-117.  doi: 10.1016/j.na.2017.12.003.
    [21] M. Di Francesco and S. Fagioli, A nonlocal swarm model for predators-prey interactions, Math. Models Methods Appl. Sci., 26 (2016), 319-355.  doi: 10.1142/S0218202516400042.
    [22] M. Di Francesco and S. Fagioli, Measure solutions for non-local interaction PDEs with two species, Nonlinearity, 26 (2013), 2777-2808.  doi: 10.1088/0951-7715/26/10/2777.
    [23] M. Di Francesco, S. Fagioli, M. D. Rosini and G. Russo, Follow-the-Leader approximations of macroscopic models for vehicular and pedestrian flows, Active Particles, Vol. 1, Birkhäuser/Springer, Cham, 2017, 333-378.
    [24] M. Di Francesco and Y. Jaafra, Multiple large-time behavior of nonlocal interaction equations with quadratic diffusion, Kinet. Relat. Models, 12 (2019), 303-322.  doi: 10.3934/krm.2019013.
    [25] M. Di Francesco and D. Matthes, Curves of steepest descent are entropy solutions for a class of degenerate convection-diffusion equations, Calc. Var. Partial Differential Equations, 50 (2014), 199-230.  doi: 10.1007/s00526-013-0633-5.
    [26] Y. Du, Order Structure and Topological Methods in Nonlinear Partial Differential Equations, Vol. 1, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2006. doi: 10.1142/9789812774446.
    [27] J. Evers, R. Fetecau and T. Kolokolnikov, Equilibria for an aggregation model with two species, SIAM J. Appl. Dyn. Syst., 16 (2017), 2287-2338. doi: 10.1137/16M1109527.
    [28] S. Fagioli and E. Radici, Solutions to aggregation-diffusion equations with nonlinear mobility constructed via a deterministic particle approximation, Math. Models Methods Appl. Sci., 28 (2018), 1801-1829.  doi: 10.1142/S0218202518400067.
    [29] K. Fellner and G. Raoul, Stable stationary states of non-local interaction equations, Math. Models Methods Appl. Sci., 20 (2010), 2267-2291.  doi: 10.1142/S0218202510004921.
    [30] K. Fellner and G. Raoul, Stability of stationary states of non-local equations with singular interaction potentials, Math. Comput. Modelling, 53 (2011), 1436-1450.  doi: 10.1016/j.mcm.2010.03.021.
    [31] S. GottliebC. Shu and E. Tadmor, Strong stability-preserving high-order time discretization methods, SIAM Rev., 43 (2001), 89-112.  doi: 10.1137/S003614450036757X.
    [32] S. Guo, Bifurcation and spatio-temporal patterns in a diffusive predator-prey system, Nonlinear Anal. Real World Appl., 42 (2018), 448-477. doi: 10.1016/j. nonrwa. 2018.01.011.
    [33] R. JordanD. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal., 29 (1998), 1-17.  doi: 10.1137/S0036141096303359.
    [34] G. Kaib, Stationary states of an aggregation equation with degenerate diffusion and bounded attractive potential, SIAM J. Math. Anal., 49 (2017), 272-296.  doi: 10.1137/16M1072450.
    [35] H. Krause and  G. D. RuxtonLiving in Groups, Oxford University Press, 2002. 
    [36] A. J. Lotka, Contribution to the theory of periodic reaction, J. Phys. Chem., 14 (1910), 271-274.  doi: 10.1021/j150111a004.
    [37] D. MatthesR. J. McCann and G. Savaré, A family of nonlinear fourth order equations of gradient flow type, Comm. Partial Differential Equations, 34 (2009), 1352-1397.  doi: 10.1080/03605300903296256.
    [38] M. Mimura and M. Yamaguti, Pattern formation in interacting and diffusing systems in population biology, Adv. Biophys. 15, 19-65, 1982. doi: 10.1016/0065-227X(82)90004-1.
    [39] A. Mogilner and L. Edelstein-Keshet, A non-local model for a swarm, J. Math. Biol., 38 (1999), 534-570.  doi: 10.1007/s002850050158.
    [40] D. Morale, V. Capasso and K. Oelschläger, An interacting particle system modelling aggregation behavior: From individuals to populations, J. Math. Biol., 50 (2005), 49-66. doi: 10.1007/s00285-004-0279-1.
    [41] J. D. Murray, Mathematical Biology. I, 3rd edition, Interdisciplinary Applied Mathematics, Vol. 17, Springer-Verlag, New York, 2002.
    [42] A. Okubo and S. A. Levin, Diffusion and Ecological Problems: Modern Perspectives, 2nd edition, Interdisciplinary Applied Mathematics, Vol. 14, Springer-Verlag, New York, 2001. doi: 10.1007/978-1-4757-4978-6.
    [43] J. K. Parrish and L. Edelstein-Keshet, Complexity, patterns and evolutionary trade-offs in animal aggregation, Science, 254 (1999), 99-101.  doi: 10.1126/science.284.5411.99.
    [44] R. Rossi and G. Savaré, Tightness, integral equicontinuity and compactness for evolution problems in Banach spaces, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 2 (2003), 395-431. 
    [45] F. Santambrogio, Optimal Transport for Applied Mathematicians, Progress in Nonlinear Differential Equations and Their Applications, Vol. 87, Birkhäuser/Springer, Cham, 2015. doi: 10.1007/978-3-319-20828-2.
    [46] H. Tomkins and T. Kolokolnikov, Swarm shape and its dynamics in a predator-swarm model, preprint, 2014.
    [47] C. M. Topaz and A. L. Bertozzi, Swarming patterns in a two-dimensional kinematic model for biological groups, SIAM J. Appl. Math., 65 (2004), 152-174.  doi: 10.1137/S0036139903437424.
    [48] C. M. TopazA. L. Bertozzi and M. A. Lewis, A nonlocal continuum model for biological aggregation, Bull. Math. Biol., 68 (2006), 1601-1623.  doi: 10.1007/s11538-006-9088-6.
    [49] M. Torregrossa and G. Toscani, On a Fokker-Planck equation for wealth distribution, Kinet. Relat. Models, 11 (2018), 337-355. doi: 10.3934/krm. 2018016.
    [50] M. Torregrossa and G. Toscani, Wealth distribution in presence of debts. A Fokker-Planck description, Commun. Math. Sci., 16 (2018), 537-560. doi: 10.4310/CMS. 2018. v16. n2. a11.
    [51] G. Toscani, Kinetic models of opinion formation, Commun. Math. Sci., 4 (2006), 481-496. doi: 10.4310/CMS. 2006. v4. n3. a1.
    [52] J. L. VazquezThe Porous Medium Equation. Mathematical Theory, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, Oxford, 2007. 
    [53] C. Villani, Topics in Optimal Transportation, Graduate Studies in Mathematics, Vol. 58, American Mathematical Society, Providence, RI, 2003. doi: 10.1090/gsm/058.
    [54] V. Volterra, Variazioni e fluttuazioni del numero d'individui in specie animali conviventi, Mem. Accad. Lincei Roma, 2 (1926), 31-113. 
  • 加载中

Figures(9)

SHARE

Article Metrics

HTML views(2194) PDF downloads(187) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return