\`x^2+y_1+z_12^34\`
Article Contents
Article Contents

Nonlinear Schrödinger equations on a finite interval with point dissipation

  • * Corresponding author: Shu-Ming Sun

    * Corresponding author: Shu-Ming Sun
The research was partially supported by the National Science Foundation under grant No. DMS-1210979
Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • The paper considers the initial value problem of a general type of nonlinear Schrödinger equations

    $ iu_t+u_{xx}+f(u) = 0 , \;\;\;\; u ( x, 0 ) = w_0 (x) $

    posed on a finite domain $ x\in [0, L] $ with an $ L^2 $-stabilizing feedback control law $ u(0, t) = \beta u(L, t), \beta u_x(0, t)-u_x(L, t) = i\alpha u(0, t), $ where $ L>0 $, $ \alpha, \beta $ are real constants with $ \alpha\beta<0 $ and $ \beta\neq \pm 1 $, and $ f(u) $ is a smooth function from $ \mathbb{C} $ to $ \mathbb{C} $ satisfying some growth conditions. It is shown that for $ s \in \left ( \frac12, 1\right ] $ and $ w_0 (x) \in H^s(0, L ) $ with the boundary conditions described above, the problem is locally well-posed for $ u \in C([0, T]; H^s (0, L )) $. Moreover, the solution with small initial condition exists globally and approaches to 0 as $ t \rightarrow + \infty $.

    Mathematics Subject Classification: Primary: 35Q55; Secondary: 35Q93.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  •   J. L. Bona , S. M. Sun  and  B.-Y. Zhang , Nonhomogeneous boundary-value problems for one-dimensional nonlinear Schrödinger equations, J. Math. Pures Appl., 109 (2018) , 1-66.  doi: 10.1016/j.matpur.2017.11.001.
      J. Bourgain , Fourier transform restriction phenomena for certain lattice subsets and applications to non-linear evolution equations, part Ⅰ: Schrödinger equations, Geom. Funct. Anal., 3 (1993) , 107-156.  doi: 10.1007/BF01896020.
      J. Bourgain, Global Solutions of Nonlinear Schrödinger Equations, Colloqium Publication, Vol. 46, American Mathematical Society, Providence, RI, 1999. doi: 10.1090/coll/046.
      H. Brézis  and  T. Gallouet , Nonlinear Schrödinger evolution equation, Nonlinear Anal. TMA, 4 (1980) , 677-681.  doi: 10.1016/0362-546X(80)90068-1.
      C. Bu , An initial-boundary value problem of the nonlinear Schrödinger equation, Appl. Anal., 53 (1994) , 241-254.  doi: 10.1080/00036819408840260.
      C. Bu , Nonlinear Schrödinger equation on the semi-infinite line, Chinese Annals of Math., 21 (2000) , 209-222. 
      C. Bu, K. Tsutaya and C Zhang, Nonlinear Schrödinger equation with inhomogebeous Dirichlet boundary data, J. Math. Phys., 46 (2005), 083504, 6pp. doi: 10.1063/1.1914730.
      T. Cazenave, Semilinear Schrödinger Equations, American Math. Soc., Providence, RI, 2003. doi: 10.1090/cln/010.
      T. Cazenave , D. Fang  and  Z. Han , Continuous dependence for NLS in fractional order spaces, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 28 (2011) , 135-147.  doi: 10.1016/j.anihpc.2010.11.005.
      T. Cazenave  and  F. B. Weissler , The Cauchy problem for the critical nonlinear Schrödinger equation in $H^s$, Nonlinear Anal. TMA, 14 (1990) , 807-836.  doi: 10.1016/0362-546X(90)90023-A.
      A. Chabchoub, N. Hoffmann and N. Akhmediev, Rogue wave observation in a water wave tank, Phys. Rev. Lett., 106 (2011), 204502. doi: 10.1103/PhysRevLett.106.204502.
      N. Dunford and J. T. Schwartz, Linear Operators, Part III, Wiley-Interscience, New York, 1971.
      M. Fujii  and  R. Nakamoto , Simultaneous Extensions of Selberg inequality and Heinz-Kato-Furuta inequality, Nihonkai Math., 9 (1998) , 219-225. 
      G. Gao  and  S. M. Sun , A Korteweg-de Vries type of fifth-order equations on a finite domain with point dissipation, J. Math. Anal. Appl., 438 (2016) , 200-239.  doi: 10.1016/j.jmaa.2016.01.050.
      J. Ginibre  and  G. Velo , On a class of nonlinear Schrödinger equations. Ⅰ. The Cauchy problem, general case, J. Functional Anal., 32 (1979) , 1-32.  doi: 10.1016/0022-1236(79)90076-4.
      J. Ginibre  and  G. Velo , On a class of nonlinear Schrödinger equations. Ⅱ. Scattering theory, general case, J. Functinal Anal., 32 (1979) , 33-71.  doi: 10.1016/0022-1236(79)90077-6.
      L. F. Ho  and  D. L. Russell , Admissible input elements for systems in Hillbert space and Carleson measure criterion, SIAM J. Control. Optim., 21 (1983) , 614-640.  doi: 10.1137/0321037.
      J. Holmer , The initial-boundary value problem for the $1$-$d$ nonlinear Schrödinger equation on the half-line, Diff. Integral Equations, 18 (2005) , 647-668. 
      F.-L. Huang , Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces, Ann. Differential Equations, 1 (1985) , 43-56. 
      R. Illner , H. Lange  and  H. Teismann , A note on the exact internal control of nonlinear Schrödinger equations, CRM Proc. Lecture Notes, 33 (2003) , 127-137. 
      R. Illner , H. Lange  and  H. Teismann , Limitations on the control of Schrödinger equations, ESAIM Control Optim. Calc. Var., 12 (2006) , 615-635.  doi: 10.1051/cocv:2006014.
      T. Kato, On nonlinear Schrödinger equations, Ann. Inst. H. Poincaré, Phys. Theor., 46 (1987), 113--129.
      T. Kato , On nonlinear Scrhödinger equations. Ⅱ. $H^s$-solutions and unconditional well-posedness, J. d'Analyse Math., 67 (1995) , 281-306.  doi: 10.1007/BF02787794.
      S. Kamvissis, Semiclassical nonlinear Schrödinger on the half line, J. Math. Phys., 44 (2003), 5849--5868. doi: 10.1063/1.1624091.
      V. Komornik, A generalization of Ingham's inequality, in Colloq. Math. Soc. $J\grave{a}nos$ Bolyai, Differential Equations Applications, 62 (1991), 213--217.
      H. Lange  and  H. Teismann , Controllability of the nonlinear Schrödinger equation in the vicinity of the ground state, Math. Methods Appl. Sci., 30 (2007) , 1483-1505.  doi: 10.1002/mma.849.
      G. Lumer  and  R. S. Phillips , Dissipative operators in a Banach space, Pacific J. Math., 11 (1961) , 679-698.  doi: 10.2140/pjm.1961.11.679.
      A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.
      D. Peregrine , Water waves, nonlinear Schrödinger equations and their solutions, J. Austral. Math. Soc. B, 25 (1983) , 16-43.  doi: 10.1017/S0334270000003891.
      L. Rosier  and  B.-Y. Zhang , Local exact controllability and stabilizability of the nonlinear Schrödinger equation on a bounded interval, SIAM J. Control Optim., 48 (2009) , 972-992.  doi: 10.1137/070709578.
      D. L. Russell , Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions, SIAM Rev., 20 (1978) , 639-739.  doi: 10.1137/1020095.
      D. L. Russell  and  B. Y. Zhang , Controllability and stabilizability of the third-order linear dispersion equation on a periodic domain, SIAM J. Control Optim., 31 (1993) , 659-676.  doi: 10.1137/0331030.
      D. L. Russell  and  B. Y. Zhang , Smoothing and decay properties of solutions of the Korteweg-de Vries equation on a periodic domain with point dissipation, J. Math. Anal. Appl., 190 (1995) , 449-488.  doi: 10.1006/jmaa.1995.1087.
      W. Strauss  and  C. Bu , Inhomogeneous boundary value problem for a nonlinear Schrödinger equation, J. Diff. Equations, 173 (2001) , 79-91.  doi: 10.1006/jdeq.2000.3871.
      S. M. Sun , The Korteweg-de Vries equation on a periodic domain with singular-point dissipation, SIAM J. Control and Optimization, 34 (1996) , 892-912.  doi: 10.1137/S0363012994269491.
      Y. Tsutsumi , $L^2$-solutions for nonlinear Schrödinger equations and nonlinear groups, Funk. Ekva., 30 (1987) , 115-125. 
      V. E. Zakharov  and  S. V. Manakov , On the complete integrability of a nonlinear Schrödinger equation, J. Theore. and Math. Phys., 19 (1974) , 551-559. 
      V. E. Zakharov  and  A. B. Shabat , Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, J. Experi. and Theore. Phys., 34 (1972) , 62-69. 
  • 加载中
SHARE

Article Metrics

HTML views(2217) PDF downloads(223) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return