\`x^2+y_1+z_12^34\`
Article Contents
Article Contents

Asymptotic study of an anisotropic Fokker-Planck collision operator in a strong magnetic field

  • *Corresponding author: Etienne Lehman

    *Corresponding author: Etienne Lehman 
Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • The present paper is concerned with the derivation, via asymptotic studies, of a reduced hybrid model describing the anisotropic fusion plasma dynamics. The parallel dynamics is governed by a kinetic equation, whereas the perpendicular dynamics is described by a Maxwellian distribution function, whose temperature $ T_\perp $ satisfies an evolution equation, exchanging information with the parallel direction via some coupling terms. The reduced model is obtained from the underlying fully kinetic model, under the assumption of a strong magnetic field and strong collisionality in the perpendicular direction. From a numerical point of view, reduced models are very advantageous, permitting significant savings in computational times and memory. To improve the precision of the reduced description, we propose in this paper also first order correction terms with respect to the parameter describing the anisotropy, and discuss these terms from a physical point of view. This first order truncated model is new to our knowledge, meets the desired requirements of precision and efficiency, and its derivation is clearly exposed in this work, based on formal asymptotic studies.

    Mathematics Subject Classification: Primary: 35Q84, 35C20, 35B40; Secondary: 82C40.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] N. B. Abdallah and R. E. Hajj, Diffusion and guiding center approximation for particle transport in strong magnetic fields, Kinetic and Related Models, 1 (2008), 331-354.  doi: 10.3934/krm.2008.1.331.
    [2] N. B. Abdallah and M. L. Tayeb, Diffusion approximation for the one dimensional Boltzmann-Poisson system, Discrete and Continuous Dynamical Systems - B, 4 (2004), 1129-1142.  doi: 10.3934/dcdsb.2004.4.1129.
    [3] L. AddalaJ. DolbeaultX. Li and M. L. Tayeb, $L^2$-hypocoercivity and large time asymptotics of the linearized Vlasov-Poisson-Fokker-Planck system, Journal of Statistical Physics, 184 (2021).  doi: 10.1007/s10955-021-02784-4.
    [4] A. ArnoldJ. A. CarrilloI. Gamba and C. -W. Shu, Low and high field scaling limits for the Vlasov- and Wigner-Poisson-Fokker-Planck systems, Transport Theory and Statistical Physics, 30 (2001), 121-153.  doi: 10.1081/TT-100105365.
    [5] A. Barakat and R. Schunk, Transport equations for multicomponent anisotropic space plasmas: A review, Plasma Physics, 24 (1982), 389.  doi: 10.1088/0032-1028/24/4/004.
    [6] C. BardosE. BernardF. Golse and R. Sentis, The diffusion approximation for the linear Boltzmann equation with vanishing scattering coefficient, Communications in Mathematical Sciences, 13 (2013).  doi: 10.4310/CMS.2015.v13.n3.a3.
    [7] C. W. BardosF. Golse and D. M. Levermore, Fluid dynamic limits of kinetic equations. I. Formal derivations, Journal of Statistical Physics, 63 (1991), 323-344.  doi: 10.1007/BF01026608.
    [8] A. Blaustein, Diffusive limit of the Vlasov-Poisson-Fokker-Planck model: quantitative and strong convergence results, SIAM J. Math. Anal (to appear), (2023). doi: 10.1137/22M1530197.
    [9] A. V. Bobylev, Quasistationary hydrodynamics for the Boltzmann equation, Journal of Statistical Physics, 80 (1995), 1063-1083.  doi: 10.1007/BF02179864.
    [10] ——, Boltzmann equation and hydrodynamics beyond Navier-Stokes, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376 (2018), 20170227. doi: 10.1098/rsta.2017.0227.
    [11] V. I. Bogachev, Gaussian measures, vol. 62 of Mathematical Surveys and Monographs, 1998. doi: 10.1090/surv/062.
    [12] L. L. Bonilla and J. S. Soler, High-field limit of the Vlasov-Poisson-Fokker-Planck system: A comparison of different perturbation methods, Mathematical Models and Methods in Applied Sciences, 11 (2001), 1457-1468.  doi: 10.1142/S0218202501001410.
    [13] M. Bostan, The Vlasov-Maxwell system with strong initial magnetic field: Guiding-center approximation, Multiscale Modeling & Simulation, 6 (2007), 1026-1058.  doi: 10.1137/070689383.
    [14] M. Bostan and I. M. Gamba, Impact of strong magnetic fields on collision mechanism for transport of charged particles, Journal of Statistical Physics, 148 (2012), 856-895.  doi: 10.1007/s10955-012-0560-4.
    [15] S. Braginskii, Transport processes in a plasma, Reviews of plasma physics, 1 (1965), 205. 
    [16] H. Brézis, Analyse fonctionnelle: Théorie et applications, Dunod, 1999.
    [17] A. Brizard and T. Hahm, Foundations of nonlinear gyrokinetic theory, Rev. Mod. Phys., 79 (2007), 421.  doi: 10.1103/RevModPhys.79.421.
    [18] G. ChewM. Goldberger and F. Low, The Boltzmann equation and the one-fluid hydromagnetic equations in the absence of particle collisions, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 236 (1956), 112-118.  doi: 10.1098/rspa.1956.0116.
    [19] S. Cordier and E. Grenier, Quasineutral limit of an Euler-Poisson system arising from plasma physics, Communications in Partial Differential Equations, 25 (2000), 1099-1113.  doi: 10.1080/03605300008821542.
    [20] D. Coulette, S. A. Hirstoaga and G. Manfredi, Effect of collisional temperature isotropisation on ELM parallel transport in a tokamak scrape-off layer, Plasma Physics and Controlled Fusion, 58 (2016), p. 085004.
    [21] R. C. DavidsonD. A. HammerI. Haber and C. E. Wagner, Nonlinear development of electromagnetic instabilities in anisotropic plasmas, The Physics of Fluids, 15 (1972), 317-333. 
    [22] P. Degond, Macroscopic limits of the Boltzmann equation: A review, Birkhäuser Boston, Boston, MA, 2004, 3-57.
    [23] F. Filbet and C. Negulescu, Fokker-Planck multi-species equations in the adiabatic asymptotics, Journal of Computational Physics, 471 (2022), p. 111642. doi: 10.1016/j.jcp.2022.111642.
    [24] S. P. Gary, The mirror and ion cyclotron anisotropy instabilities, Journal of Geophysical Research: Space Physics, 97 (1992), 8519-8529. 
    [25] N. Ghani and N. Masmoudi, Diffusion limit of the Vlasov-Poisson-Fokker-Planck system, Models Methods Appl. Sci. Math. Models Methods Appl. Sci, 8 (2000), 463-479.  doi: 10.4310/CMS.2010.v8.n2.a9.
    [26] F. Golse, Chapter 3 - The Boltzmann equation and its hydrodynamic limits, vol. 2 of Handbook of Differential Equations: Evolutionary Equations, North-Holland, 2005.
    [27] F. Golse and L. Saint-Raymond, The Vlasov-Poisson system with strong magnetic field, Journal de Mathématiques Pures et Appliquées, 78 (1999), 791-817.  doi: 10.1016/S0021-7824(99)00021-5.
    [28] E. Grenier, Oscillations in quasineutral plasmas, Communications in Partial Differential Equations, 21 (1996). doi: 10.1080/03605309608821189.
    [29] D. Han-Kwan and M. Hauray, Stability issues in the quasineutral limit of the one-dimensional Vlasov-Poisson equation, Communications in Mathematical Physics, 334 (2015), 1101-1152.  doi: 10.1007/s00220-014-2217-4.
    [30] R. D. Hazeltine and J. D. Meiss, Plasma Confinement, Dover Books, 2003.
    [31] J. A. Krommes, The gyrokinetic description of microturbulence in magnetized plasmas, Annual Review of Fluid Mechanics, 44 (2012), 175-201.  doi: 10.1146/annurev-fluid-120710-101223.
    [32] E. Lehman and C. Negulescu, Vlasov-Poisson-Fokker-Planck equation in the adiabatic asymptotics. Working Paper or Preprint, Sept. 2022.
    [33] G. Manfredi, S. Hirstoaga and S. Devaux, Vlasov modelling of parallel transport in a tokamak scrape-off layer, Plasma Physics and Controlled Fusion, 53 (2010), p. 015012.
    [34] P. Markowich, C. Ringhofer and C. Schmeiser, Semiconductor Equations, Springer Vienna, 2012. doi: 10.1007/978-3-7091-6961-2.
    [35] D. MoultonW. FundamenskiG. ManfrediS. Hirstoaga and D. Tskhakaya, Comparison of free-streaming ELM formulae to a Vlasov simulation, Journal of Nuclear Materials, 438 (2013), S633-S637. 
    [36] C. Negulescu, Kinetic modelling of strongly magnetized tokamak plasmas with mass disparate particles. the Electron-Boltzmann relation, Multiscale Modeling and Simulation: A SIAM Interdisciplinary Journal, 16 (2018), 1732-1755.  doi: 10.1137/17M113109X.
    [37] C. Negulescu and S. Possanner, Closure of the strongly magnetized electron fluid equations in the adiabatic regime, Multiscale Modeling & Simulation, 14 (2016), 839-873.  doi: 10.1137/15M1027309.
    [38] J. NietoF. Poupaud and J. Soler, High-field limit for the Vlasov-Poisson-Fokker-Planck system, Archive for Rational Mechanics and Analysis, 158 (2001), 29-59.  doi: 10.1007/s002050100139.
    [39] T. Nishida, Fluid dynamical limit of the nonlinear Boltzmann equation to the level of the compressible Euler equation, Communications in Mathematical Physics, 61 (1978), 119-148.  doi: 10.1007/BF01609490.
    [40] S. OssakowI. Haber and E. Ott, Simulation of whistler instabilities in anisotropic plasmas, The Physics of Fluids, 15 (1972), 1538-1540. 
    [41] T. O'Neil, Collision operator for a strongly magnetized pure electron plasma, The Physics of Fluids, 26 (1983), 2128-2135. 
    [42] G. PhilippeH. Maxime and A. Nouri, Derivation of a gyrokinetic model. existence and uniqueness of specific stationary solution, Kinetic and Related Models, 2 (2009), 707-725.  doi: 10.3934/krm.2009.2.707.
    [43] F. Poupaud and J. Soler, Parabolic limit and stability of the Vlasov-Fokker-Planck system, Mathematical Models and Methods in Applied Sciences, 10 (2000), 1027-1045.  doi: 10.1142/S0218202500000525.
    [44] L. Saint-Raymond, Control of large velocities in the two-dimensional gyrokinetic approximation, Journal de Mathématiques Pures et Appliquées, 81 (2002), 379-399.  doi: 10.1016/S0021-7824(01)01245-4.
    [45] B. Scott, Turbulence and instabilities in magnetised plasmas, Volume 1, IOP Publishing, 2021, 2053-2563.
    [46] P. C. Stangeby et al., The plasma boundary of magnetic fusion devices, Institute of Physics Pub. Philadelphia, Pennsylvania, 224 (2000).
  • 加载中
SHARE

Article Metrics

HTML views(945) PDF downloads(308) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return