\`x^2+y_1+z_12^34\`
Article Contents
Article Contents

Stochastic comparison of the second-largest order statistics from heterogeneous models

  • *Corresponding author: Suchandan Kayal

    *Corresponding author: Suchandan Kayal

S. Das is supported by Ministry of Education (formerly MHRD), Govt. of India and S. Kayal is supported by SERB, India (Grant no. MTR/2018/000350)

Abstract / Introduction Full Text(HTML) Figure(5) Related Papers Cited by
  • The second-largest order statistic is of special importance in reliability theory since it represents the time to failure of a $ 2 $-out-of-$ n $ system. Consider two $ 2 $-out-of-$ n $ systems with heterogeneous random component lifetimes, following a general family of exponentiated location-scale distributions. In this article, usual stochastic order between the lifetimes of systems has been established when the components are interdependent. For the independent heterogeneous distributions, sufficient conditions under which reversed hazard rate order between the second-largest order statistics holds are investigated. To illustrate theoretical findings, some examples are considered.

    Mathematics Subject Classification: Primary: 60E15; Secondary: 90B25.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  (a) Plots of $ {F}_{X_{2:3}}(x) $ and $ {F}_{Y_{2:3}}(x) $ as in Example 3.1(i). (b) Plots of $ {F}_{X_{2:3}}(x) $ and $ {F}_{Y_{2:3}}(x) $ as in Example 3.1(ii)

    Figure 2.  (a) Plots of $ {F}_{X_{2:3}}(x) $ and $ {F}_{Y_{2:3}}(x) $ as in Counterexample 3.1. (b) Plots of $ {F}_{X_{2:3}}(x) $ and $ {F}_{Y_{2:3}}(x) $ as in Counterexample 3.2

    Figure 3.  (a) Plots of $ {F}_{X_{2:3}}(x) $ and $ {F}_{Y_{2:3}}(x) $ as in Example 3.2(i). (b) Plots of $ {F}_{X_{2:3}}(x) $ and $ {F}_{Y_{2:3}}(x) $ as in Example 3.2(ii)

    Figure 4.  (a) Plot of the difference $ {F}_{X_{2:3}}(x)-{F}_{Y_{2:3}}(x) $ as in Counterexample 3.3. (b) Plot of $ \tilde{r}_{X_{2:3}}(x)-\tilde{r}_{Y_{2:3}}(x) $ as in Example 3.3

    Figure 5.  (a) Plot of $ \frac{\tilde{r}_{Y_{2:3}}(x)}{\tilde{r}_{X_{2:3}}(x)} $ as in Counterexample 3.4. (b) Plot of $ \frac{f_{Y_{2:3}}(x)}{f_{X_{2:3}}(x)} $ as in Counterexample 3.4

  • [1] N. BalakrishnanG. Barmalzan and A. Haidari, On stochastic comparisons of $k$-out-of-$n$ systems with Weibull components, J. Appl. Probab., 55 (2018), 216-232.  doi: 10.1017/jpr.2018.14.
    [2] N. BalakrishnanG. BarmalzanA. Haidari and A. T. P. Najafabadi, Necessary and sufficient conditions for stochastic orders between ($n-r+1$)-out-of-$n$ systems in proportional hazard (reversed hazard) rates model, Comm. Statist. Theory Methods, 47 (2018), 5854-5866.  doi: 10.1080/03610926.2017.1406517.
    [3] N. Balakrishnan and P. Zhao, Ordering properties of order statistics from heterogeneous populations: A review with an emphasis on some recent developments, Probab. Engrg. Inform. Sci., 27 (2013), 403-443.  doi: 10.1017/S0269964813000156.
    [4] F. Belzunce, J. Candel and J. M. Ruiz, Ordering and asymptotic properties of residual income distributions, Sankhya Ser. B, 60 (1998), 331-348.
    [5] W. DingY. Zhang and P. Zhao, Comparisons of $k$-out-of-$n$ systems with heterogenous components, Statist. Probab. Lett., 83 (2013), 493-502.  doi: 10.1016/j.spl.2012.10.012.
    [6] R. FangC. Li and X. Li, Stochastic comparisons on sample extremes of dependent and heterogenous observations, Statistics, 50 (2016), 930-955.  doi: 10.1080/02331888.2015.1119151.
    [7] A. Kundu and S. Chowdhury, On stochastic comparisons of series systems with heterogeneous dependent and independent location-scale family distributed components, Oper. Res. Lett., 48 (2020), 40-47.  doi: 10.1016/j.orl.2019.11.004.
    [8] A. KunduS. ChowdhuryA. K. Nanda and N. K. Hazra, Some results on majorization and their applications, J. Comput. Appl. Math., 301 (2016), 161-177.  doi: 10.1016/j.cam.2016.01.015.
    [9] C. LiR. Fang and X. Li, Stochastic comparisons of order statistics from scaled and interdependent random variables, Metrika, 79 (2016), 553-578.  doi: 10.1007/s00184-015-0567-3.
    [10] C. Li and X. Li, Hazard rate and reversed hazard rate orders on extremes of heterogeneous and dependent random variables, Statist. Probab. Lett., 146 (2019), 104-111.  doi: 10.1016/j.spl.2018.11.005.
    [11] X. Li and R. Fang, Ordering properties of order statistics from random variables of Archimedean copulas with applications, J. Multivariate Anal., 133 (2015), 304-320.  doi: 10.1016/j.jmva.2014.09.016.
    [12] A. W. Marshall, I. Olkin and B. C. Arnold, Inequalities: Theory of Majorization and its Applications, 2$^{nd}$ edition, Springer, New York, 2011. doi: 10.1007/978-0-387-68276-1.
    [13] A. J. McNeil and J. Nešlehová, Multivariate archimedean copulas, $d$-monotone functions and $l^1$-norm symmetric distributions, Ann. Statist., 37 (2009), 3059-3097.  doi: 10.1214/07-AOS556.
    [14] M. MesfiouiM. Kayid and S. Izadkhah, Stochastic comparisons of order statistics from heterogeneous random variables with Archimedean copula, Metrika, 80 (2017), 749-766.  doi: 10.1007/s00184-017-0626-z.
    [15] R. B. Nelson, An Introduction to Copulas, 2$^{nd}$ edition, Springer, New York, 2006. doi: 10.1007/s11229-005-3715-x.
    [16] P. E. Oliveira and N. Torrado, On proportional reversed failure rate class, Statist. Papers, 56 (2015), 999-1013.  doi: 10.1007/s00362-014-0620-8.
    [17] M. Shaked and J. G. Shanthikumar, Stochastic Orders, Springer Series in Statistics, Springer, New York, 2007. doi: 10.1007/978-0-387-34675-5.
    [18] Y. Yu, On stochastic comparisons of order statistics from heterogeneous exponential samples, Probab. Engrg. Inform. Sci., 35 (2019), 532-537.  doi: 10.1017/S026996481900041X.
  • 加载中

Figures(5)

SHARE

Article Metrics

HTML views(1821) PDF downloads(106) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return