\`x^2+y_1+z_12^34\`
Article Contents
Article Contents

Solving matrix game using rough interval payoffs

  • *Corresponding author: Sankar Kumar Roy, Orcid: 0000-0003-4478-1534

    *Corresponding author: Sankar Kumar Roy, Orcid: 0000-0003-4478-1534
Abstract / Introduction Full Text(HTML) Figure(2) / Table(4) Related Papers Cited by
  • In this paper, we conduct an analysis of a matrix game using rough interval payoffs, which we refer to as the rough interval matrix game (RIMG). We employ three methods to address the problem at hand: linear programming, graphical method, and algebraic method. The proposed approach offers several key advantages over existing methods, which we highlight. We introduce algorithms associated with each of the three mentioned methods to obtain optimal solutions for the RIMG. To validate the effectiveness of our proposed techniques, we present two numerical examples and apply the methodologies to solve them. In conclusion, we summarize the findings of our study and discuss potential avenues for future research based on the insights provided in this paper.

    Mathematics Subject Classification: Primary: 91A86; Secondary: 91A80.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Graph of $ \phi_j(t),\; j = 1,2,3 $

    Figure 2.  Graph of $ \psi(t) $

    Table 1.  Contributions of different authors in relate to matrix game under uncertainty

    Author Payoff Matrix Approach
    Campos (1989) Fuzzy Linear programming problem
    Li (1999) Fuzzy Multi-objective programming
    Osman et al. (2011) Rough interval Rough programming
    Li (2011) Interval An effective linear programming problem
    Hamzehee et al. (2014) Rough interval Linear programming problems with rough approximation concept
    Li and Nan (2014) Interval Interval programming
    Roy and Mondal (2016) Fuzzy An effective fuzzy multi-objective linear programming with fuzzy interval payoffs
    Roy and Mula (2016) Rough interval Genetic algorithm and Linear programming problem
    Bhurjee and Panda (2017) Interval Normalized matrix game with variable payoffs
    Our proposed work Rough interval Three traditional methods, namely, AM, GM, and LPP
     | Show Table
    DownLoad: CSV

    Table 2.  Optimal value and strategy of players by LPP

    Problem Value of the game Optimal strategy (Player A) Optimal strategy (Player B)
    Problem-1.1 93.684 (0.474, 0.526) (0.526, 0.000, 0.474)
    Problem-1.2 111.428 (0.524, 0.476) (0.571, 0.000, 0.429)
    Problem-2.1 87.500 (0.500, 0.500) (0.550, 0.000, 0.450)
    Problem-2.2 117.500 (0.500, 0.500) (0.550, 0.000, 0.450)
     | Show Table
    DownLoad: CSV

    Table 3.  Game value using different methods in market share problem

    Methods Value of the game
    Using LPP ([93.684,111.428], [87.500,117.500])
    Using GM ([97.693,103.076], [92.693,111.153])
    Using AM ([97.692,117.692], [92.692,122.692])
     | Show Table
    DownLoad: CSV

    Table 4.  Game value using different methods in water resources management problem

    Methods Value of the game
    Using LPP ([65.000, 75.000], [60.000, 80.000])
    Using GM ([75.000, 79.520], [57.620, 87.620])
    Using AM ([53.300, 62.000], [48.300, 67.000])
     | Show Table
    DownLoad: CSV
  • [1] C. R. Bector and S. Chandra, Fuzzy Mathematical Programming and Fuzzy Matrix Games, Berlin, Springer, Vol. 169, 2005.
    [2] A. Bhaumik and S. K. Roy, Evaluations for medical diagnoses phenomena through $2\times2$ linguistic neutrosophic environment-based game situation, Soft Computing, 26 (2022), 4883-4893.  doi: 10.1007/s00500-022-06881-8.
    [3] A. Bhaumik and S. K. Roy, Fuzzy matrix game: A fast approach using artificial hybrid neural-net logic-gate switching circuit, Soft Computing, 26 (2022), 9125-9135.  doi: 10.1007/s00500-022-07346-8.
    [4] A. BhaumikS. K. Roy and D.-F. Li, Analysis of triangular intuitionistic fuzzy matrix games using robust ranking, Journal of Intelligent & Fuzzy Systems, 33 (2017), 327-336.  doi: 10.3233/JIFS-161631.
    [5] A. BhaumikS. K. Roy and D. F. Li, $(\alpha, \beta, \gamma)$-cut set based ranking approach to solving bi-matrix games in neutrosophic environment, Soft Computing, 25 (2021), 2729-2739.  doi: 10.1007/s00500-020-05332-6.
    [6] A. BhaumikS. K. Roy and G. W. Weber, Hesitant interval-valued intuitionistic fuzzy-linguistic term set approach in Prisoners' dilemma game theory using TOPSIS: A case study on human-trafficking, Central European Journal of Operations Research, 28 (2020), 797-816.  doi: 10.1007/s10100-019-00638-9.
    [7] A. BhaumikS. K. Roy and G. W. Weber, Multi-objective linguistic-neutrosophic matrix game and its applications to tourism management, Journal of Dynamics & Games, 8 (2021), 101-118.  doi: 10.3934/jdg.2020031.
    [8] A. K. Bhurjee and G. Panda, Optimal strategies for two-person normalized matrix game with variable payoffs, Operational Research: An International Journal, 17 (2017), 547-562.  doi: 10.1007/s12351-016-0237-x.
    [9] L. Campos, Fuzzy linear programming models to solve fuzzy matrix games, Fuzzy Sets and Systems, 32 (1989), 275-289.  doi: 10.1016/0165-0114(89)90260-1.
    [10] S. Chandra and A. Aggarwal, On solving matrix games with pay-offs of triangular fuzzy numbers: Certain observations and generalizations, European Journal of Operational Research, 246 (2015), 575-581.  doi: 10.1016/j.ejor.2015.05.011.
    [11] J. ChengJ. Leung and A. Lisser, Random-payoff two-person zero-sum game with joint chance constraints, European Journal of Operational Research, 252 (2016), 213-219.  doi: 10.1016/j.ejor.2015.12.024.
    [12] J. Gao, Credibilistic game with fuzzy information, Journal of Uncertain Systems, 1 (2007), 74-80. 
    [13] J. GaoZ. Q. Liu and P. Shen, On characterization of credibilistic equilibria of fuzzy-payoff two-player zero-sum game, Soft Computing, 13 (2009), 127-132.  doi: 10.1007/s00500-008-0310-3.
    [14] J. GaoX. Yang and D. Liu, Uncertain Shapley value of coalitional game with application to supply chain alliance, Applied Soft Computing, 56 (2017), 551-556.  doi: 10.1016/j.asoc.2016.06.018.
    [15] A. Goli, Integration of blockchain-enabled closed-loop supply chain and robust product portfolio design, Computers & Industrial Engineering, 179 (2023), 109211.  doi: 10.1016/j.cie.2023.109211.
    [16] A. Goli, A. Ala and M. Hajiaghaei-Keshteli, Efficient multi-objective meta-heuristic algorithms for energy-aware non-permutation flow-shop scheduling problem, Expert Systems with Applications, 213 (2023), Part B, 119077. doi: 10.1016/j.eswa.2022.119077.
    [17] A. GoliA. Ala and S. Mirjalili, A robust possibilistic programming framework for designing an organ transplant supply chain under uncertainty, Annals of Operations Research, 328 (2023), 493-530.  doi: 10.1007/s10479-022-04829-7.
    [18] A. GoliA.-M. Golmohammadi and J. L. Verdegay, Two-echelon electric vehicle routing problem with a developed moth-flame meta-heuristic algorithm, Operations Management Research, 15 (2022), 891-912.  doi: 10.1007/s12063-022-00298-0.
    [19] A. Goli and T. Keshavarz, Just-in-time scheduling in identical parallel machine sequence-dependent group scheduling problem, Journal of Industrial and Management Optimization, 18 (2022), 3807-3830.  doi: 10.3934/jimo.2021124.
    [20] A. Goli and E. B. Tirkolaee, Designing a portfolio-based closed-loop supply chain network for dairy products with a financial approach: Accelerated Benders decomposition algorithm, Computers & Operations Research, 155 (2023), Paper No. 106244, 20 pp. doi: 10.1016/j.cor.2023.106244.
    [21] A. HamzeheeM. A. Yaghoobi and M. Mashinchi, Linear programming with rough interval coefficients, Journal of Intelligent & Fuzzy Systems, 26 (2014), 1179-1189.  doi: 10.3233/IFS-130804.
    [22] J. P. Herbert and J. Yao, Game-theoretic rough sets, Fundamenta Informaticae, 108 (2011), 267-286.  doi: 10.3233/FI-2011-423.
    [23] F. X. Hong and D. F. Li, Nonlinear programming method for interval-valued n-person cooperative games, Operational Research: An International Journal, 17 (2017), 479-497. 
    [24] J. Jana and S. Kumar Roy, Solution of matrix games with generalised trapezoidal fuzzy payoffs, Fuzzy Information and Engineering, 10 (2018), 213-224.  doi: 10.1080/16168658.2018.1517975.
    [25] J. Jana and S. K. Roy, Dual hesitant fuzzy matrix games: Based on new similarity measure, Soft Computing, 23 (2019), 8873-8886.  doi: 10.1007/s00500-018-3486-1.
    [26] J. Jana and S. K. Roy, Two-person game with hesitant fuzzy payoff: An application in MADM, RAIRO-Operations Research, 55 (2021), 3087-3105.  doi: 10.1051/ro/2021149.
    [27] J. Jana and S. K. Roy, Linguistic Pythagorean hesitant fuzzy matrix game and its application in multi-criteria decision making, Applied Intelligence, 53 (2023), 1-22. 
    [28] D. Li, A fuzzy multiobjective programming approach to solve fuzzy matrix games, Journal of Fuzzy Mathematics, 7 (1999), 907-912. 
    [29] D.-F. Li, Linear programming approach to solve interval-valued matrix games, Omega, 39 (2011), 655-666.  doi: 10.1016/j.omega.2011.01.007.
    [30] D.-F. Li, A fast approach to compute fuzzy values of matrix games with payoffs of triangular fuzzy numbers, European Journal of Operational Research, 223 (2012), 421-429.  doi: 10.1016/j.ejor.2012.06.020.
    [31] D.-F. Li and J. X. Nan, An interval-valued programming approach to matrix games with payoffs of triangular intuitionistic fuzzy numbers, Iranian Journal of Fuzzy Systems, 11 (2014), 45-57. 
    [32] D.-F. LiJ.-X. Nan and M.-J. Zhang, Interval programming models for matrix games with interval payoffs, Optimization Methods and Software, 27 (2012), 1-16.  doi: 10.1080/10556781003796622.
    [33] B. Liu, Theory and Practice of Uncertain Programming, Physica-Verlag, Heidelberg, 2002. doi: 10.1007/978-3-7908-1781-2.
    [34] R. E. Moore, Interval Analysis, Prentice-Hall, Englewood-Cliffs, NJ, 1966.
    [35] O. Morgenstern and J. Von Neumann, Theory of Games and Economic Behavior, Princeton University Press, 1953.
    [36] I. Nishizaki and M. Sakawa, Fuzzy and Multiobjective Games for Conflict Resolution, Springer Science & Business Media, Vol. 64, 2001. doi: 10.1007/978-3-7908-1830-7.
    [37] M. S. OsmanE. F. LasheinE. A. Youness and T. E. M. Atteya, Mathematical programming in rough environment, Optimization, 60 (2011), 603-611.  doi: 10.1080/02331930903536393.
    [38] Z. Pawlak, Rough sets, International Journal of Computer & Information Sciences, 11 (1982), 341-356.  doi: 10.1007/BF01001956.
    [39] Z. Pawlak, Rough Sets: Theoretical Aspects of Reasoning about Data, Dordrecht: Kluwer Academic Publishers, 1991.
    [40] M. Rebolledo, Rough intervals-enhancing intervals for qualitative modeling of technical systems, Artificial Intelligence, 170 (2006), 667-685.  doi: 10.1016/j.artint.2006.02.004.
    [41] S. K. Roy, Game Theory Under MCDM and Fuzzy Set Theory: Some Problems in Multi-Criteria Decision Making Using Game Theoretic Approach, VDM Publishing, Germany, 2010.
    [42] S. K. Roy and A. Bhaumik, Intelligent water management: A triangular type-2 intuitionistic fuzzy matrix games approach, Water Resources Management, 32 (2018), 949-968.  doi: 10.1007/s11269-017-1848-6.
    [43] S. K. Roy and S. N. Mondal, An approach to solve fuzzy interval valued matrix game, International Journal of Operational Research, 26 (2016), 253-267. 
    [44] S. K. Roy and P. Mula, Rough set approach to bi-matrix game, International Journal Operational Research, 23 (2015), 229-244.  doi: 10.1504/IJOR.2015.069182.
    [45] S. K. Roy and P. Mula, Solving matrix game with rough payoffs using genetic algorithm, Operational Research: An International Journal, 16 (2016), 117-130. 
    [46] E. Savku and G.-W. Weber, Stochastic differential games for optimal investment problems in a Markov regime-switching jump-diffusion market, Annals of Operations Research, 312 (2022), 1171-1196.  doi: 10.1007/s10479-020-03768-5.
    [47] E. Savku and G.-W. Weber, A stochastic maximum principle for a Markov Regime-Switching jump-diffusion model with delay and an application to Finance, Journal of Optimization Theory and Applications, 179 (2018), 696-721.  doi: 10.1007/s10957-017-1159-3.
    [48] V. V. Singh and A. Lisser, A second-order cone programming formulation for two player zero-sum games with chance constraints, European Journal of Operational Research, 275 (2019), 839-845.  doi: 10.1016/j.ejor.2019.01.010.
  • 加载中

Figures(2)

Tables(4)

SHARE

Article Metrics

HTML views(641) PDF downloads(106) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return