\`x^2+y_1+z_12^34\`
Article Contents
Article Contents

Estimating absorption and scattering in quantitative photoacoustic tomography with an adaptive Monte Carlo method for light transport

  • *Corresponding author: Niko Hänninen

    *Corresponding author: Niko Hänninen 
Abstract / Introduction Full Text(HTML) Figure(9) / Table(2) Related Papers Cited by
  • In this work, the optical inverse problem of quantitative photoacoustic tomography is studied. Maximum a posteriori estimates for absorption and scattering are computed from absorbed energy density, and the reliability of the estimates is evaluated utilizing the Laplace's approximation. The forward operator and evaluation of the search direction in the minimization algorithm are based on the Monte Carlo method for light transport. Monte Carlo is a stochastic method where the solution of a light transport model is approximated by simulating paths of photon packets as they undergo absorption and scattering events in a scattering medium. This makes evaluation of the search direction also stochastic. In this work, we study an adaptive approach where the number of simulated photon packets on each iteration is determined by utilizing a so-called norm test. In the norm test, the variance of the gradient of the objective function is assessed and used to control the number of photon packets. The approach is studied with numerical simulations. The results show that the adaptive approach can be used to control the number of photon packets during an iterative solution of the inverse problem of quantitative photoacoustic tomography. Further, the adaptive approach can reduce the computational cost compared to a conventional approach where the number of photon packets is fixed.

    Mathematics Subject Classification: Primary: 65Z05; Secondary: 35R30.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Simulated absorption (left) and scattering (right) distributions in the highly scattering (top row) and the low scattering 2D target (bottom row). The dashed lines indicate the cross sections where the results and credibility intervals are visualized in Section 6.1

    Figure 2.  MAP estimates of absorption coefficient $ \mu_{ \rm{a}} $ (first column), standard deviation of the absorption estimate $ \sigma_{ \rm{a}} $ (second column), MAP estimates of scattering coefficient $ \mu_{ \rm{s}} $ (third column) and standard deviation of the scattering estimate $ \sigma_{ \rm{s}} $ (fourth column). Results computed with the adaptive A-SGN approach (first row), with fixed number of photon packets with S-SGN$ _1 $ (second row), S-SGN$ _2 $ (third row), S-SGN$ _3 $ (fourth row) and with the adaptive A-SGN$ _{ \rm{GN}} $ (fifth row) approaches

    Figure 3.  Absorption coefficient (first column) and scattering coefficient (second column) along the cross section shown in Figure 1. True values are presented with solid blue line, MAP estimates with dashed black line and credibility intervals (CI) with gray area. Results computed with the adaptive A-SGN approach (first row), with fixed number of photon packets with S-SGN$ _1 $ (second row), S-SGN$ _2 $ (third row), S-SGN$ _3 $ (fourth row), and with adaptive A-SGN$ _{ \rm{GN}} $ (fifth row) approaches

    Figure 4.  MAP estimates of absorption coefficient $ \mu_{ \rm{a}} $ (first column), standard deviation of the absorption estimate $ \sigma_{ \rm{a}} $ (second column), MAP estimates of scattering coefficient $ \mu_{ \rm{s}} $ (third column) and standard deviation of the scattering estimate $ \sigma_{ \rm{s}} $ (fourth column). Results computed with the adaptive A-SGN approach (first row), with fixed number of photon packets with S-SGN$ _1 $ (second row), S-SGN$ _2 $ (third row), S-SGN$ _3 $ (fourth row) and with the adaptive A-SGN$ _{ \rm{GN}} $ (fifth row) approaches

    Figure 5.  Absorption coefficient (first column) and scattering coefficient (second column) along the cross section shown in Figure 1. True values are presented with solid blue line, MAP estimates with dashed black line and credibility intervals (CI) with gray area. Results computed with the adaptive A-SGN approach (first row), with fixed number of photon packets with S-SGN$ _1 $ (second row), S-SGN$ _2 $ (third row), S-SGN$ _3 $ (fourth row), and with adaptive A-SGN$ _{ \rm{GN}} $ (fifth row) approaches

    Figure 6.  Value of the objective function $ u(x) $ (first column), relative error of the absorption estimate $ E_{ \rm{a}} $ (second column) and scattering estimate $ E_{ \rm{s}} $ (third column) in the case of the highly scattering target (top row) and low scattering target (bottom row). Results computed with the A-SGN (red, solid), S-SGN$ _1 $ approach (blue, dotted), S-SGN$ _2 $ (blue, dashed) and S-SGN$ _3 $ (blue, solid) approaches

    Figure 7.  Cumulative number of simulated photon packets $ \sum_i P_i $ on each iteration with the highly scattering target (left) and low scattering target (right). Results computed with the A-SGN (red, solid), S-SGN$ _1 $ (blue, dotted), S-SGN$ _2 $ (blue, dashed), S-SGN$ _3 $ (blue, solid) and A-SGN$ _{ \rm{GN}} $ (red, dashed) approaches

    Figure 8.  Values of the objective function $ u(x) $ on the final iteration (first column), relative errors of the absorption estimates $ E_{\rm a} $ (second column) and the scattering estimates $ E_{\rm s} $ (third column), and total number of simulated photon packets $ P_b $ (fourth column) for the highly scattering target (top row) and low scattering target (bottom row) with A-SGN, S-SGN$ _1 $, S-SGN$ _2 $, S-SGN$ _3 $ and A-SGN$ _{ \rm{GN}} $ approaches. The black vertical lines (whiskers) denotes all samples excluding outliers, box denotes the 25th and 75th percentile, horizontal line denotes the median and $ + $ symbol denotes outliers

    Figure 9.  Values of the objective function $ u(x) $ on the final iteration (first column), relative errors of the absorption estimates $ E_{\rm a} $ (second column) and the scattering estimates $ E_{\rm s} $ (third column), and total number of simulated photon packets $ P_b $ (fourth column) with the adaptive A-SGN approach using different values of the threshold parameter $ \gamma_{\nabla} $ (horizontal axis). The black vertical lines (whiskers) denotes all samples excluding outliers, box denotes the 25th and 75th percentile, horizontal line denotes the median and $ + $ symbol denotes outliers

    Table 1.  Parameters of the minimization algorithms utilized in this study. $ P_i $ is the number of photon packets per illumination on each iteration, $ L $ is the number of samples utilized in the norm test, $ P_1 $ the initial number of photon packets and $ \gamma $ is the threshold parameter ($ \gamma_{\nabla} $ or $ \gamma_{ \rm{GN}} $). Norm test direction indicates which minimization direction is used to evaluate the norm test

    Approach $ P_i $ Norm test direction $ L $ $ P_1 $ $ \gamma $
    A-SGN Adaptive Stochastic gradient 10 $ 10^4 $ $ 0.4-0.8 $
    S-SGN$ _1 $ $ 10^4 $ - - - -
    S-SGN$ _2 $ $ 10^7 $ - - - -
    S-SGN$ _3 $ $ 10^9 $ - - - -
    A-SGN$ _{ \rm{GN}} $ Adaptive Stochastic GN 10 $ 10^4 $ 0.8
     | Show Table
    DownLoad: CSV

    Table 2.  Mean and standard deviation of the objective function value on the final iteration $ u(x) $, the relative error of absorption estimates $ E_{\rm a}\, (\%) $ and scattering estimates $ E_{\rm s}\, (\%) $, the total number of simulated photon packets $ P_b $ and the percentage of the true values that are within the credibility intervals for the absorption $ \rm{CI}_{ \mu_{\mathrm{a}}} $ and scattering $ \rm{CI}_{ \mu_{\mathrm{s}}} $ for the A-SGN, S-SGN$ _1 $, S-SGN$ _2 $, S-SGN$ _3 $ and A-SGN$ _{ \rm{GN}} $ approaches

    Highly scattering target
    A-SGN S-SGN$ _1 $ S-SGN$ _2 $ S-SGN$ _3 $ A-SGN$ _{\rm GN} $
    $ u(x) $ $ 1523 \pm 30 $ $ 8821 \pm 710 $ $ 1441 \pm 2 $ $ 1432.9 \pm 0.1 $ $ 1467 \pm 14 $
    $ E_{\rm a}\, (\%) $ $ 7.547 \pm 0.009 $ $ 8.6 \pm 0.2 $ $ 7.537 \pm 0.001 $ $ 7.5353 \pm 0.0002 $ $ 7.538 \pm 0.002 $
    $ E_{\rm s}\, (\%) $ $ 8.0 \pm 0.2 $ $ 16.4 \pm 1.6 $ $ 7.8 \pm 0.1 $ $ 7.8 \pm 0.1 $ $ 7.9 \pm 0.2 $
    $ P_b $ $ (3.3 \pm 0.9) \cdot 10^6 $ $ (9 \pm 3) \cdot 10^5 $ $ (7\pm 0) \cdot 10^7 $ $ (5 \pm 0) \cdot 10^9 $ $ (1.1 \pm 0.4) \cdot 10^7 $
    CI$ _{ \mu_{\mathrm{a}}}\, (\%) $ $ 99.9 $ $ 85.9 $ $ 99.9 $ $ 100 $ $ 100 $
    CI$ _{ \mu_{\mathrm{s}}}\, (\%) $ $ 99.6 $ $ 75.3 $ $ 99.8 $ $ 99.8 $ $ 99.8 $
    Low scattering target
    A-SGN S-SGN$ _1 $ S-SGN$ _2 $ S-SGN$ _3 $ A-SGN$ _{\rm GN} $
    $ u(x) $ $ 1343.5 \pm 0.6 $ $ 10 186 \pm 444 $ $ 1367 \pm 4 $ $ 1352.8 \pm 0.4 $ $ 1354 \pm 1 $
    $ E_{\rm a}\, (\% $) $ 7.4642 \pm 0.0008 $ $ 8.4 \pm 0.1 $ $ 7.470 \pm 0.009 $ $ 7.4639 \pm 0.0003 $ $ 7.465 \pm 0.001 $
    $ E_{\rm s}\, (\% $) $ 10.13 \pm 0.03 $ $ 22.3 \pm 1.8 $ $ 10.2 \pm 0.1 $ $ 10.15 \pm 0.02 $ $ 10.15 \pm 0.03 $
    $ P_b $ $ (7.5 \pm 2.5) \cdot 10^8 $ $ (1.02 \pm 0) \cdot 10^6 $ $ (7.7\pm 2.6) \cdot 10^8 $ $ (7.2 \pm 0.5) \cdot 10^9 $ $ (1.9 \pm 2.4) \cdot 10^9 $
    CI$ _{ \mu_{\mathrm{a}}}\, (\%) $ $ 99.4 $ $ 82.3 $ $ 99.4 $ $ 99.4 $ $ 99.4 $
    CI$ _{ \mu_{\mathrm{s}}}\, (\%) $ $ 99.8 $ $ 67.6 $ $ 99.8 $ $ 99.8 $ $ 99.8 $
     | Show Table
    DownLoad: CSV
  • [1] G. S. Alberti and H. Ammari, Disjoint sparsity for signal separation and applications to hybrid inverse problems in medical imaging, Appl. Comput. Harmon. Anal., 42 (2017), 319-349.  doi: 10.1016/j.acha.2015.08.013.
    [2] S. R. Arridge, Optical tomography in medical imaging, Inv. Probl., 15 (1999), R41-R93. doi: 10.1088/0266-5611/15/2/022.
    [3] M. BadriP. JolivetB. Rousseau and Y. Favennec, Preconditioned Krylov subspace methods for solving radiative transfer problems with scattering and reflection, Comput. Math. Appl., 77 (2019), 1453-1465.  doi: 10.1016/j.camwa.2018.09.041.
    [4] G. BalI. Langmore and Y. Marzouk, Bayesian inverse problems with Monte Carlo forward models, Inv. Probl. Imag., 7 (2013), 81-105.  doi: 10.3934/ipi.2013.7.81.
    [5] G. Bal and K. Ren, Multi-source quantitative photoacoustic tomography in a diffusive regime, Inv. Probl., 27 (2011), 075003, 20 pp. doi: 10.1088/0266-5611/27/7/075003.
    [6] G. Bal and K. Ren, On multi-spectral quantitative photoacoustic tomography in a diffusive regime, Inv. Probl., 28 (2012), 025010, 13 pp. doi: 10.1088/0266-5611/28/2/025010.
    [7] A. N. BashkatovE. A. Genina and V. V. Tuchin, Optical properties of skin, subcutaneous, and muscle tissues: A review, J. Innov. Opt. Health. Sci., 4 (2011), 9-38.  doi: 10.1142/S1793545811001319.
    [8] P. Beard, Biomedical photoacoustic imaging, Interface Focus, 1 (2011), 602-631.  doi: 10.1098/rsfs.2011.0028.
    [9] R. BollapragadaR. Byrd and J. Nocedal, Adaptive sampling strategies for stochastic optimization, SIAM J. Optim., 28 (2018), 3312-3343.  doi: 10.1137/17M1154679.
    [10] L. BottouF. E. Curtis and J. Nocedal, Optimization methods for large-scale machine learning, SIAM Review, 60 (2018), 223-311.  doi: 10.1137/16M1080173.
    [11] J. BrunkerJ. YaoJ. Laufer and S. E. Bohndiek, Photoacoustic imaging using genetically encoded reporters: A review, J. Biomed. Opt., 22 (2017), 070901.  doi: 10.1117/1.JBO.22.7.070901.
    [12] J. BuchmannB. KaplanS. PowellS. Prohaska and J. Laufer, Quantitative PA tomography of high resolution 3-D images: Experimental validation in a tissue phantom, Photoacoustics, 17 (2020), 100157.  doi: 10.1016/j.pacs.2019.100157.
    [13] J. BuchmannB. A. KaplanS. PowellS. Prohaska and J. Laufer, Three-dimensional quantitative photoacoustic tomography using an adjoint radiance Monte Carlo model and gradient descent, J. Biomed. Opt., 24 (2019), 066001.  doi: 10.1117/1.JBO.24.6.066001.
    [14] R. H. ByrdG. M. ChinJ. Nocedal and Y. Wu, Sample size selection in optimization methods for machine learning, Math. Program., 134 (2012), 127-155.  doi: 10.1007/s10107-012-0572-5.
    [15] W. F. CheongS. A. Prahl and A. J. Welch, A review of the optical properties of biological tissues, IEEE J. Quantum. Electron., 26 (1990), 2166-2185.  doi: 10.1109/3.64354.
    [16] B. CoxJ. G. LauferS. R. Arridge and P. C. Beard, Quantitative spectroscopic photoacoustic imaging: A review, J. Biomed. Opt., 17 (2012), 061202.  doi: 10.1117/1.JBO.17.6.061202.
    [17] B. CoxT. Tarvainen and S. Arridge, Multiple illumination quantitative photoacoustic tomography using transport and diffusion models, Tomography and Inverse Transport Theory, Contemporary Mathematics, American Mathematical Society, 559 (2011), 1-12.  doi: 10.1090/conm/559/11067.
    [18] B. T. CoxS. R.Ar ridge and P. C. Beard, Estimating chromophore distributions from multiwavelength photoacoustic images, J. Opt. Soc. Am. A, 26 (2009), 443-455.  doi: 10.1364/JOSAA.26.000443.
    [19] T. Ding, K. Ren and S. Vallélian, A one-step reconstruction algorithm for quantitative photoacoustic imaging, Inv. Probl., 31 (2015), 095005, 18 pp. doi: 10.1088/0266-5611/31/9/095005.
    [20] Q. Fang and D. Boas, Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units, Opt. Express., 17 (2009), 20278-20190.  doi: 10.1364/OE.17.020178.
    [21] J. E. Freund, I. Miller and M. Miller, John E. Freund's Mathematical Statistics with Applications, 8th ed., Pearson, 2014.
    [22] M. P. Friedlander and M. Schmidt, Hybrid deterministic-stochastic methods for data fitting, SIAM J. Sci. Comput., 34 (2012), A1380-A1405. doi: 10.1137/110830629.
    [23] H. Gao, J. Feng and L. Song, Limited-view multi-source quantitative photoacoustic tomography, Inv. Probl., 31 (2015), 065004, 23 pp. doi: 10.1088/0266-5611/31/6/065004.
    [24] H. Gao, H. Zhao and S. Osher, Bregman methods in quantitative photoacoustic tomography, UCLA CAM Report, (2010), 10-24.
    [25] M. Haltmeier, L. Neumann and S. Rabanser, Single-stage reconstruction algorithm for quantitative photoacoustic tomography, Inv. Probl., 31 (2015), 065005, 24 pp. doi: 10.1088/0266-5611/31/6/065005.
    [26] N. HänninenA. PulkkinenS. Arridge and T. Tarvainen, Image reconstruction in quantitative photoacoustic tomography using adaptive optical Monte Carlo, Photons Plus Ultrasound: Imaging and Sensing 2023, International Society for Optics and Photonics, SPIE, 12379 (2022), 1237916. 
    [27] C. HayakawaJ. SpanierF. BevilacquaA. DunnJ. YouB. Tromberg and V. Venugopalan, Perturbation Monte Carlo methods to solve inverse photon migration problems in heterogeneous tissues, Opt. Lett., 26 (2001), 1335-1337.  doi: 10.1364/OL.26.001335.
    [28] L. G. Henyey and J. L. Greenstein, Diffuse radiation in the Galaxy, Astrophys. J., 93 (1941), 70-83.  doi: 10.1086/144246.
    [29] R. HochuliS. PowellS. Arridge and B. Cox, Quantitative photoacoustic tomography using forward and adjoint Monte Carlo models of radiance, J. Biomed. Opt., 21 (2016), 126004.  doi: 10.1117/1.JBO.21.12.126004.
    [30] N. HänninenA. PulkkinenS. R. Arridge and T. Tarvainen, Adaptive stochastic Gauss-Newton method with optical Monte Carlo for quantitative photoacoustic tomography, J. Biomed. Opt., 27 (2022), 1-21. 
    [31] N. HänninenA. PulkkinenA. Leino and T. Tarvainen, Application of diffusion approximation in quantitative photoacoustic tomography in the presence of low-scattering regions, J. Quant. Spectrosc. Radiat. Transf., 250 (2020), 107065. 
    [32] N. Hänninen, A. Pulkkinen and T. Tarvainen, Image reconstruction with reliability assessment in quantitative photoacoustic tomography, J. Imaging., 4 (2018).
    [33] A. Ishimaru, Wave Propagation and Scattering in Random Media, IEEE/OUP Class. Reissue, IEEE Press, New York, 1997.
    [34] S. L. Jacques, Optical properties of biological tissues: A review, Phys. Med. Biol., 58 (2013), R37. doi: 10.1088/0031-9155/58/11/R37.
    [35] A. Javaherian and S. Holman, Direct quantitative photoacoustic tomography for realistic acoustic media, Inv. Probl., 35 (2019), 084004, 39 pp. doi: 10.1088/1361-6420/ab091e.
    [36] J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, Appl. Math. Sci., 160. Springer-Verlag, New York, 2005.
    [37] A. LeinoT. LunttilaM. MozumderA. Pulkkinen and T. Tarvainen, Perturbation Monte Carlo method for quantitative photoacoustic tomography, IEEE Trans. Med. Imaging., 39 (2020), 2985-2995.  doi: 10.1109/TMI.2020.2983129.
    [38] C. Li and L. V. Wang, Photoacoustic tomography and sensing in biomedicine, Phys. Med. Biol., 54 (2009), R59-R97. doi: 10.1088/0031-9155/54/19/R01.
    [39] I. Lux and  L. KoblingerMonte Carlo Particle Transport Methods: Neutron and Photon Calculations, CRC Press, 1991. 
    [40] C. M. MacdonaldS. Arridge and S. Powell, Efficient inversion strategies for estimating optical properties with Monte Carlo radiative transport models, J. Biomed. Opt., 25 (2020), 085002. 
    [41] A. V. Mamonov and K. Ren, Quantitative photoacoustic imaging in radiative transport regime, Commun. Math. Sci., 12 (2014), 201-234.  doi: 10.4310/CMS.2014.v12.n2.a1.
    [42] J. Nocedal and S. J. Wright, Numerical Optimization, Springer Ser. Oper. Res. Financ. Eng., Springer, New York, 2006.
    [43] S. OkawaT. HirasawaK. TsujitaT. Kushibiki and M. Ishihara, 3D quantitative photoacoustic image reconstruction using Monte Carlo method and linearization, Photons Plus Ultrasound: Imaging and Sensing 2018, 10494 (2018), 448-453.  doi: 10.1117/12.2293229.
    [44] S. A. PrahlM. KeijzerS. L. Jacques and J. L. Welch, A Monte Carlo model of light propagation in tissue, SPIE Proceedings of Dosimetry of Laser Radiation in Medicine and Biology, IS 5 (1989), 102-111. 
    [45] A. PulkkinenB. T. CoxS. R. ArridgeH. GohJ. P. Kaipio and T. Tarvainen, Direct estimation of optical parameters from photoacoustic time series in quantitative photoacoustic tomography, IEEE Trans. Med. Imag., 35 (2016), 2497-2508.  doi: 10.1088/0266-5611/30/6/065012.
    [46] A. Pulkkinen, B. T. Cox, S. R. Arridge, J. P. Kaipio and T. Tarvainen, A Bayesian approach to spectral quantitative photoacoustic tomography, Inv. Probl., 30 (2014), 065012, 18 pp. doi: 10.1088/0266-5611/30/6/065012.
    [47] A. PulkkinenB. T. CoxS. R. ArridgeJ. P. Kaipio and T. Tarvainen, Quantitative photoacoustic tomography using illuminations from a single direction, J. Biomed. Opt., 20 (2015), 036015.  doi: 10.1117/1.JBO.20.3.036015.
    [48] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning, Adapt. Comput. Mach. Learn., MIT Press, Cambridge, MA, 2006.
    [49] K. RenH. Gao and H. Zhao, A hybrid reconstruction method for quantitative PAT, SIAM J. Imag. Sci., 6 (2013), 32-55.  doi: 10.1137/120866130.
    [50] T. Saratoon, T. Tarvainen, B. T. Cox and S. R. Arridge, A gradient-based method for quantitative photoacoustic tomography using the radiative transfer equation, Inv. Probl., 29 (2013), 075006, 19 pp. doi: 10.1088/0266-5611/29/7/075006.
    [51] A. SassaroliC. BlumettiF. MartelliL. AlianelliD. ContiniA. Ismaelli and G. Zaccanti, Monte carlo procedure for investigating light propagation and imaging of highly scattering media, Appl. Opt., 37 (1998), 7392-7400.  doi: 10.1364/AO.37.007392.
    [52] A. Sassaroli and F. Martelli, Equivalence of four Monte Carlo methods for photon migration in turbid media, J. Opt. Soc. Am. A, 29 (2012), 2110-2117.  doi: 10.1364/JOSAA.29.002110.
    [53] P. ShaoB. Cox and R. Zemp, Estimating optical absorption, scattering and Grueneisen distributions with multiple-illumination photoacoustic tomography, Appl. Opt., 50 (2011), 3145-3154.  doi: 10.1364/AO.50.003145.
    [54] I. SteinbergD. M. HulandO. VermeshH. E. FrostigW. S. Tummers and S. S. Gambhir, Photoacoustic clinical imaging, Photoacoustics, 14 (2019), 77-98.  doi: 10.1016/j.pacs.2019.05.001.
    [55] A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation, Society for Industrial and Applied Mathematics, 2005. doi: 10.1137/1.9780898717921.
    [56] T. Tarvainen, B. T. Cox, J. P. Kaipio and S. R. Arridge, Reconstructing absorption and scattering distributions in quantitative photoacoustic tomography, Inv. Probl., 28 (2012), 084009, 17 pp. doi: 10.1088/0266-5611/28/8/084009.
    [57] T. TarvainenA. PulkkinenB. T. CoxJ. P. Kaipio and S. R. Arridge, Bayesian image reconstruction in quantitative photoacoustic tomography, IEEE Trans. Med. Imag., 32 (2013), 2287-2298. 
    [58] T. TarvainenM. VauhkonenV. KolehmainenS. R. Arridge and J. P. Kaipio, Coupled radiative transfer equation and diffusion approximation model for photon migration in turbid medium with low-scattering and non-scattering regions, Phys. Med. Biol., 50 (2005), 4913-4930.  doi: 10.1088/0031-9155/50/20/011.
    [59] L. Wang and S. Hu, Photoacoustic tomography: In vivo imaging from organelles to organs, Science, 335 (2012), 1458-1462.  doi: 10.1126/science.1216210.
    [60] L. WangS. L. Jacques and L. Zheng, MCML-Monte Carlo modeling of light transport in multi-layered tissues, Comput. Methods. Programs. Biomed., 47 (1995), 131-146.  doi: 10.1016/0169-2607(95)01640-F.
    [61] L. V. Wang, Prospects of photoacoustic tomography, Med. Phys., 35 (2008), 5758-5767. 
    [62] L. V. Wang and J. Yao, A practical guide to photoacoustic tomography in the life sciences, Nature Methods, 13 (2016), 627-638.  doi: 10.1038/nmeth.3925.
    [63] J. WeberP. C. Beard and S. Bohndiek, Contrast agents for molecular photoacoustic imaging, Nature Methods, 13 (2016), 639-650.  doi: 10.1038/nmeth.3929.
    [64] J. Xia and L. V. Wang, Small-animal whole-body photoacoustic tomography: A review, Phys. Med. Biol., 61 (2014), 1380-1389.  doi: 10.1109/TBME.2013.2283507.
    [65] J. YaoJ. XiaK. I. MaslovM. NasiriavanakiV. TsytsarevA. V. Demchenko and L. V. Wang, Noninvasive photoacoustic computed tomography of mouse brain metabolism in vivo, Neuroimage, 64 (2013), 257-266.  doi: 10.1016/j.neuroimage.2012.08.054.
    [66] L. YaoY. Sun and H. Jiang, Transport-based quantitative photoacoustic tomography: Simulations and experiments, Phys. Med. Biol., 55 (2010), 1917-1934. 
    [67] L. YinQ. WangQ. Zhang and H. Jiang, Tomographic imaging of absolute optical absorption coefficient in turbid media using combined photoacoustic and diffusing light measurements, Opt. Lett., 32 (2007), 2556-2558.  doi: 10.1364/OL.32.002556.
    [68] R. J. Zemp, Quantitative photoacoustic tomography with multiple optical sources, Appl. Opt., 49 (2010), 3566-3572.  doi: 10.1364/BIOMED.2010.BWG4.
    [69] C. Zhu and Q. Liu, Review of Monte Carlo modeling of light transport in tissues, J. Biomed. Opt., 18 (2013), 050902.  doi: 10.1117/1.JBO.18.5.050902.
  • 加载中

Figures(9)

Tables(2)

SHARE

Article Metrics

HTML views(1331) PDF downloads(325) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return