\`x^2+y_1+z_12^34\`
Article Contents
Article Contents

Finding robust minimizer for non-convex phase retrieval

  • *Corresponding author: Tieyong Zeng

    *Corresponding author: Tieyong Zeng

This work was supported in part by the National Key R & D Program of China under Grant 2021YFE0203700, Grant NSFC/RGC N_CUHK 415/19, Grant ITF MHP/038/20, Grant RGC 14300219, 14302920, 14301121, and CUHK Direct Grant for Research; and in part by the Natural Science Foundation of China (Grant No. 61971234, 12126340, 12126304, 11501301), the "QingLan" Project for Colleges and Universities of Jiangsu Province

Abstract / Introduction Full Text(HTML) Figure(11) / Table(3) Related Papers Cited by
  • The phase retrieval task has received considerable attention in recent years. Here, phase retrieval refers to the problem of recovering the clear image from magnitude-only data of its Fourier transform, or other linear transforms. As the observed magnitude signal is usually corrupted by heavy noise, retrieving the original object is rather difficult. In this paper, we investigate a regularization-based framelet method to recover the phase information and alleviate the influence of noise. Indeed, since phase retrieval is usually modeled by a non-convex model, how to find the solution efficiently is an intricate challenge. For this reason, we first reformulate the objective function as the difference between two convex functions. By introducing the boosted difference of convex algorithm (BDCA), the proposed scheme has good performance in handling the phase retrieval problem. Theoretically, we also present the convergence analysis of the numerical algorithm. To exhibit the effectiveness of our approach, we consider two classical regularizers with the proposed framework. Besides, two different measurement models are carefully studied to illustrate the robustness of our scheme. Numerical experiments demonstrate clearly that the proposed framelet method is effective and robust in tackling the non-convex phase retrieval task.

    Mathematics Subject Classification: Primary: 68U10, 94A08k, 90C47; Secondary: 65K10.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The sensitive analysis of initial values. The proposed model (10) of the image 'cameraman' with the degradation of the $ 3n $ Fourier mask ratio 50% and $ \mathrm{SNR} = 30 $. (a) SNR(dB) results with 100 random values of $ \Phi(u) = \Vert\nabla u\Vert_1 $; (c) SNR(dB) results with 100 random values of $ \Phi(u) = \Vert\mathcal{W} u\Vert_1 $; the average visual results with (b) $ \mathrm{SNR} = 22.67 $ and (d) $ \mathrm{SNR} = 24.47 $

    Figure 2.  Comparisons between our BDCA and DC algorithm of Image 'cameraman' with CDP mask type $ J = 2 $. Here the red, green, and blue lines are with $ \sigma = 0 $, $ \sigma = 10 $, and $ \sigma = 30 $ respectively

    Figure 3.  Sensitive analysis with parameters $ \lambda $, $ \rho $. Image 'cameraman' with the degradation of the $ 3n $ Fourier mask ratio 50% and $ \mathrm{SNR} = 30 $

    Figure 4.  Sensitive analysis with parameters $ r_1 $, $ r_2 $, and $ r_3 $. Image 'cameraman' with the degradation of the $ 3n $ Fourier mask ratio 50% and $ \mathrm{SNR} = 30 $. The first row displays the results of the proposed model with $ \Phi(u) = \Vert\nabla u\Vert_1 $ and the second row is the results of the proposed model with $ \Phi(u) = \Vert\mathcal{W}u\Vert_1 $

    Figure 5.  The convergence behavior of the proposed model (10) of the image 'cameraman' with the degradation of the $ 3n $ Fourier mask ratio 50% and $ \mathrm{SNR} = 30 $

    Figure 6.  The comparison results (SNR/SSIM) of Img10 with $ 3n $ Fourier mask ratio $ 50% $ and $ \sigma = 0 $

    Figure 7.  The comparison results (SNR/SSIM) of Img08 with $ 3n $ Fourier mask ratio $ 50% $ and $ \sigma = 10 $

    Figure 8.  The comparison results (SNR/SSIM) of (2D projection slice of molecule) with CDP mask type $ J = 2 $ and $ \sigma = 1 $

    Figure 9.  The comparison results (SNR/SSIM) of Img13 with CDP mask type $ J = 2 $ and $ \sigma = 10 $

    Figure 10.  The comparison results (SNR/SSIM) of Img03 with CDP mask type $ J = 2 $ and $ \sigma = 30 $

    Figure 11.  The comparison results (SNR/SSIM) with random initial value of (2D projection slice of molecule) with CDP mask type $ J = 2 $ and $ \sigma = 10 $. (a) the original image; (b) The random value image with Matlab command 'u0 = rand(m, n)'; (c) RAF [48]; (d) TAF [47]; (e) TWF [15]; (f) Our TV with parameter $ \lambda = 1e30 $; (g) Our TF with parameter $ \lambda = 1e30 $; (h) Our TV; (i) Our TF

    Table 1.  Average results of Set18 with SNR/SSIM/running time in second of phase retrieval (3n Fourier measurements)

    mask $ 50% $ TVB [11] Our TV Our TF
    $ \sigma=0 $ 27.83/0.7411/24.12 27.99/0.7755/21.80 28.97/0.7952/60.33
    $ \sigma=10 $ 23.14/0.5472/24.37 24.00/0.5616/19.70 24.59/0.6148/57.28
    $ \sigma=30 $ 19.40/0.4117/24.70 20.08/0.4365/19.93 21.27/0.4677/60.17
     | Show Table
    DownLoad: CSV

    Table 2.  Average results of Set18 with SNR/SSIM of phase retrieval (CDP measurement with $ J = 2 $)

    CDP mask ER [21] RAAR [30] RAF [48] RWF [52] TAF [47] CDA [54] HIO [19] TWF [15] WF [9] Our TV Our TF
    $ \sigma=30 $ 22.55/0.3406 22.94/0.3432 22.55/0.3408 22.55/0.3406 22.16/0.3418 21.72/0.3404 12.59/0.1212 22.03/0.3394 22.55/0.3406 27.02/0.6292 27.11/0.6406
    $ \sigma=10 $ 30.16/0.7323 30.56/0.7490 30.16/0.7324 30.16/0.7323 30.21/0.7345 30.06/0.7315 20.63/0.3424 30.20/0.7042 29.04/0.7402 34.53/0.8902 35.29/0.9002
     | Show Table
    DownLoad: CSV

    Table 3.  Average running time in second of Set18 of phase retrieval (CDP measurement with $ J = 2 $)

    CDP mask ER [21] RAAR [30] RAF [48] RWF [52] TAF [47] CDA [54] HIO [19] TWF [15] WF [9] Our TV Our TF
    $ \sigma=30 $ 0.67 3.20 2.83 14.39 2.91 1.55 3.42 3.06 154.91 62.77 75.09
    $ \sigma=10 $ 0.66 3.06 2.75 10.61 2.81 1.27 2.92 3.01 136.06 61.21 73.85
     | Show Table
    DownLoad: CSV
  • [1] L. T. H. An and P. D. Tao, The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems, Annals of Operations Research, 133 (2005), 23-46.  doi: 10.1007/s10479-004-5022-1.
    [2] F. J. A. ArtachoR. M. Fleming and P. T. Vuong, Accelerating the DC algorithm for smooth functions, Mathematical Programming, 169 (2018), 95-118.  doi: 10.1007/s10107-017-1180-1.
    [3] F. J. A. Artacho and P. T. Vuong, The boosted difference of convex functions algorithm for nonsmooth functions, SIAM Journal on Optimization, 30 (2020), 980-1006.  doi: 10.1137/18M123339X.
    [4] S. Bahmani and J. Romberg, Phase retrieval meets statistical learning theory: A flexible convex relaxation, Electron. J. Stat., 11 (2017), 5254-5281.  doi: 10.1214/17-EJS1378SI.
    [5] S. BoydS. P. Boyd and  L. VandenbergheConvex Optimization, Cambridge University Press, Cambridge, 2004.  doi: 10.1017/CBO9780511804441.
    [6] J. F. CaiH. Liu and Y. Wang, Fast rank-one alternating minimization algorithm for phase retrieval, J. Sci. Comput., 79 (2019), 128-147.  doi: 10.1007/s10915-018-0857-9.
    [7] E. J. CandésY. C. EldarT. Strohmer and V. Voroninski, Phase retrieval via matrix completion, SIAM Review, 57 (2015), 225-251.  doi: 10.1137/151005099.
    [8] E. J. CandésX. Li and M. Soltanolkotabi, Phase retrieval from coded diffraction patterns, Appl. Comput. Harmon. Anal., 39 (2015), 277-299.  doi: 10.1016/j.acha.2014.09.004.
    [9] E. J. CandésX. Li and M. Soltanolkotabi, Phase retrieval via Wirtinger flow: Theory and algorithms, IEEE Trans. Inform. Theory, 61 (2015), 1985-2007.  doi: 10.1109/TIT.2015.2399924.
    [10] R. Chandra, T. Goldstein and C. Studer, Phasepack: A phase retrieval library, 2019 13th International Conference on Sampling Theory and Applications, (2019), 1-5.
    [11] H. Chang, Y. Lou, M. K. Ng and T. Zeng, Phase retrieval from incomplete magnitude information via total variation regularization, SIAM Journal on Scientific Computing, 38 (2016), 3672-A3695. doi: 10.1137/15M1029357.
    [12] B. ChenZ. ZhangD. XiaE. Y. Sidky and X. Pan, Non-convex primal-dual algorithm for image reconstruction in spectral CT, Computerized Medical Imaging and Graphics, 87 (2021), 101821. 
    [13] L. ChenD. Sun and K. C. Toh, A note on the convergence of admm for linearly constrained convex optimization problems, Computational Optimization and Applications, 66 (2017), 327-343.  doi: 10.1007/s10589-016-9864-7.
    [14] P. ChenA. Fannjiang and G. R. Liu, Phase retrieval with one or two diffraction patterns by alternating projections with the null initialization, J. Fourier Anal. Appl., 24 (2018), 719-758.  doi: 10.1007/s00041-017-9536-8.
    [15] Y. Chen and E. J. Candés, Solving random quadratic systems of equations is nearly as easy as solving linear systems, Communications on Pure and Applied Mathematics, 70 (2017), 822-883.  doi: 10.1002/cpa.21638.
    [16] O. Dhifallah, C. Thrampoulidis and Y. M. Lu, Phase retrieval via polytope optimization: Geometry, phase transitions, and new algorithms, preprint, arXiv: 1805.09555, 2018.
    [17] Y. C. EldarP. SidorenkoD. G. MixonS. Barel and O. Cohen, Sparse phase retrieval from short-time Fourier measurements, IEEE Signal Processing Letters, 22 (2014), 638-642. 
    [18] V. Elser, Phase retrieval by iterated projections, Journal of the Optical Society of America. A, 20 (2003), 40-55. 
    [19] J. R. Fienup, Phase retrieval algorithms: A comparison, Applied Optics, 21 (1982), 2758-2769. 
    [20] D. Gabay and B. Mercier, A dual algorithm for the solution of nonlinear variational problems via finite element approximation, Computers & Mathematics with Applications, 2 (1976), 17-40. 
    [21] R. W. Gerchberg and W. O. A. Saxton, A practical algorithm for the determination of phase from image and diffraction plane pictures, Optik, 35 (1972), 237-246. 
    [22] R. A. Gonsalves, Phase retrieval and diversity in adaptive optics, Optical Engineering, 21 (1982), 215829. 
    [23] L. T. Hoai An, An efficient algorithm for globally minimizing a quadratic function under convex quadratic constraints, Mathematical Programming, 87 (2000), 401-426.  doi: 10.1007/s101070050003.
    [24] P. J. Huber, Robust regression: Asymptotics, conjectures and Monte Carlo, Ann. Statist., 1 (1973), 799-821. 
    [25] X. Ji and X. Liu, Inverse electromagnetic source scattering problems with multifrequency sparse phased and phaseless far field data, SIAM J. Sci. Comput., 41 (2019), 1368-1388.  doi: 10.1137/19M1256518.
    [26] M. V. KlibanovP. E. Sacks and A. V. Tikhonravov, The phase retrieval problem, Inverse Problems, 11 (1995), 1-28. 
    [27] C. KümmerleC. Mayrink Verdun and D. Stöger, Iteratively reweighted least squares for basis pursuit with global linear convergence rate, Advances in Neural Information Processing Systems, 34 (2021), 2873-2886. 
    [28] C. Lemaréchal and C. Sagastizábal, Practical aspects of the Moreau–Yosida regularization: Theoretical preliminaries, SIAM Journal on Optimization, 7 (1997), 367-385.  doi: 10.1137/S1052623494267127.
    [29] K. LiuJ. WangZ. XingL. Yang and J. Fang, Low-rank phase retrieval via variational Bayesian learning, IEEE Access, 7 (2018), 5642-5648. 
    [30] D. R. Luke, Relaxed averaged alternating reflections for diffraction imaging, Inverse Problems, 21 (2005), 37-50.  doi: 10.1088/0266-5611/21/1/004.
    [31] F. MengD. Sun and G. Zhao, Semismoothness of solutions to generalized equations and the Moreau-Yosida regularization, Mathematical Programming, 104 (2005), 561-581.  doi: 10.1007/s10107-005-0629-9.
    [32] R. MifflinL. Qi and D. Sun, Properties of the Moreau-Yosida regularization of a piecewise C$^2$ convex function, Mathematical Programming, 84 (1999), 269-281.  doi: 10.1007/s10107980029a.
    [33] P. NetrapalliP. Jain and S. Sanghavi, Phase retrieval using alternating minimization, IEEE Transactions on Signal Processing, 63 (2015), 4814-4826.  doi: 10.1109/TSP.2015.2448516.
    [34] T. PangQ. LiZ. Wen and Z. Shen, Phase retrieval: A data-driven wavelet frame based approach, Applied and Computational Harmonic Analysis, 49 (2020), 971-1000.  doi: 10.1016/j.acha.2019.05.004.
    [35] T. QiuP. Babu and D. P. Palomar, PRIME: Phase retrieval via majorization-minimization, IEEE Trans. Signal Process., 64 (2016), 5174-5186.  doi: 10.1109/TSP.2016.2585084.
    [36] R. T. RockafellarConvex Analysis, Princeton University Press, Princeton, N.J., 1970. 
    [37] L. I. RudinS. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D: Nonlinear Phenomena, 60 (1992), 259-268.  doi: 10.1016/0167-2789(92)90242-F.
    [38] T. SchüleC. SchnörrS. Weber and J. Hornegger, Discrete tomography by convex-concave regularization and DC programming, Discrete Applied Mathematics, 151 (2005), 229-243.  doi: 10.1016/j.dam.2005.02.028.
    [39] Y. ShechtmanY. C. EldarO. CohenH. N. ChapmanJ. Miao and M. Segev, Phase retrieval with application to optical imaging: A contemporary overview, IEEE Signal Processing Magazine, 32 (2015), 87-109. 
    [40] B. ShiQ. Lian and S. Chen, Sparse representation utilizing tight frame for phase retrieval, EURASIP Journal on Advances in Signal Processing, 2015 (2015), 1-11. 
    [41] W. Shu Lin and T. Zhou, Convergence analysis for three parareal solvers, SIAM Journal on Scientific Computing, 37 (2015), 970-992.  doi: 10.1137/140970756.
    [42] P. D. Tao, Algorithms for solving a class of nonconvex optimization problems. methods of subgradients, in North-Holland Mathematics Studies, 129 (1986), 249-271.  doi: 10.1016/S0304-0208(08)72402-2.
    [43] P. D. Tao and L. T. H. An, Convex analysis approach to DC programming: Theory, algorithms and applications, Acta Mathematica Vietnamica, 22 (1997), 289-355. 
    [44] J. F. Toland, On subdifferential calculus and duality in nonconvex optimization, Bulletin Des Sciences Mathématiques, 60 (1979), 177-183. 
    [45] J. A. TroppA. YurtseverM. Udell and V. Cevher, Streaming low-rank matrix approximation with an application to scientific simulation, SIAM Journal on Scientific Computing, 41 (2019), 2430-2463.  doi: 10.1137/18M1201068.
    [46] N. VaswaniS. Nayer and Y. C. Eldar, Low-rank phase retrieval, IEEE Transactions on Signal Processing, 65 (2017), 4059-4074.  doi: 10.1109/TSP.2017.2684758.
    [47] G. WangG. Giannakis and Y. C. Eldar, Solving systems of random quadratic equations via truncated amplitude flow, IEEE Transactions on Information Theory, 64 (2018), 773-794.  doi: 10.1109/TIT.2017.2756858.
    [48] G. Wang, G. B. Giannakis, Y. Saad and J. Chen, Solving almost all systems of random quadratic equations, preprint, arXiv: 1705.10407, 2017.
    [49] G. WangL. ZhangG. B. GiannakisM. Akçakaya and J. Chen, Sparse phase retrieval via truncated amplitude flow, IEEE Transactions on Signal Processing, 66 (2018), 479-491.  doi: 10.1109/TSP.2017.2771733.
    [50] K. Wei, Solving systems of phaseless equations via Kaczmarz methods: A proof of concept study, Inverse Problems, 31 (2015), 125008.  doi: 10.1088/0266-5611/31/12/125008.
    [51] J. XiaoM. K. Ng and Y. Yang, On the convergence of nonconvex minimization methods for image recovery, IEEE Transactions on Image Processing, 24 (2015), 1587-1598.  doi: 10.1109/TIP.2015.2401430.
    [52] Z. Yuan and H. Wang, Phase retrieval via reweighted Wirtinger flow, J. Comput. Appl. Math., 355 (2019), 162-173.  doi: 10.1016/j.cam.2019.01.009.
    [53] A. Yurtsever, M. Udell, J. Tropp and V. Cevher, Sketchy decisions: Convex low-rank matrix optimization with optimal storage, Artificial Intelligence and Statistics, (2017), 1188-1196.
    [54] W. J. Zeng and H. So, Coordinate descent algorithms for phase retrieval, Signal Processing, 169 (2019), 107418. 
    [55] S. Zhang, Absolute phase retrieval methods for digital fringe projection profilometry: A review, Optics and Lasers in Engineering, 107 (2018), 28-37. 
    [56] W. ZhouJ. F. Cai and H. Gao, Adaptive tight frame based medical image reconstruction: A proof-of-concept study for computed tomography, Inverse Problems, 29 (2013), 125006.  doi: 10.1088/0266-5611/29/12/125006.
  • 加载中
Open Access Under a Creative Commons license

Figures(11)

Tables(3)

SHARE

Article Metrics

HTML views(2434) PDF downloads(557) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return