\`x^2+y_1+z_12^34\`
Article Contents
Article Contents

Image denoising based on a new anisotropic mean curvature model

  • *Corresponding author: Zhi-Feng Pang

    *Corresponding author: Zhi-Feng Pang
Abstract / Introduction Full Text(HTML) Figure(10) / Table(3) Related Papers Cited by
  • A number of variational models for image denoising have been proposed in the last few years in order to advance the denoising performance. To improve the denoising quality, it is very significant to describe the local structure of image in the proposed models. To this end, this paper proposes a novel denoising model which combines the gradient operator $ \nabla $ with the adaptive weighted matrix $ W $ in the mean curvature regularized term such that the proposed model can describe the local features in image efficiently. Since the proposed model is a high-order nonlinear and nonconvex optimization problem, we need to use the operator splitting method to tansform it into a multi-variable optimization problem and then the alternating direction method of multipliers (ADMM) can be applied to solve it. Numerical experiments demonstrate that the proposed model yields good performance compared with other well-known gradient-based models.

    Mathematics Subject Classification: Primary: 58F15, 58F17; Secondary: 53C35.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  1st: affine images with different angels $ 0, \pi/8, \pi/4, $$ 3\pi/8, \pi/2 $. 2nd: the ratio of $ \log(W_x/W_y) $

    Figure 2.  Original images

    Figure 3.  Denoising results are shown by different models. Images from left to right are noisy images, denoising images of TV, HOTV, TGV, ATV, MC and the proposed model (AMC). 1st row: the noising level of variance $ \sigma = 0.05 $; 2nd row: the noising level of variance $ \sigma = 0.1 $; 3rd row: the noising level of $ \sigma = 0.2 $

    Figure 4.  The comparisons of the 180th row plots generated from the restored image and the original image. 1st row: restored image with variance $ \sigma = 0.05 $; 2nd row: restored image with variance $ \sigma = 0.1 $; 3rd row: restored image with variance $ \sigma = 0.2 $. Images from left to right are restored results of TV, HOTV, TGV, ATV, MC and AMC

    Figure 5.  Comparisons among six models in terms of the SNR and the SSIM for the brain image

    Figure 6.  Comparisons of six methods on the brain MRI with different levels of noise

    Figure 7.  Visual examples of restored images with the noise variance as $ \sigma = 0.2 $. The noisy images are displayed in the first column. The second through seventh columns show the restored results of TV, HOTV, TGV, ATV, MC and AMC model

    Figure 8.  Denoising results of six models. Images from left to right are original images, restored results of TV, HOTV, TGV, ATV, MC and the proposed model (AMC). The first and third rows are the restored images in order to efficiently show the restored results. The second and fourth rows are the contour plots. White Gaussian noise with variance as $ \sigma = 0.05 $

    Figure 9.  Visual examples of restored images with the noise variance as $ \sigma = 0.1 $. The first, fourth and seventh rows show the denoising results by using the different models. The second, fifth and eighth rows show the contours. The third, sixth and ninth rows show the difference images between restored images and the original clean images

    Figure 10.  The plots of relative residuals, relative error in $ u^k $ and energy for the brain image with variance as $ \sigma = 0.2 $

    Table 1.  SNR and SSIM of the Texmos image with different levels of white Gaussian noise

    $ 0.05 $ $ 0.1 $ $ 0.2 $
    SNR SSIM SNR SSIM SNR SSIM
    Texmos $ (512\times512) $ TV 34.9389 0.9900 30.7660 0.9864 25.8750 0.9740
    HOTV 31.8945 0.9859 26.3419 0.9657 21.4325 0.9079
    TGV 30.1237 0.9524 27.6509 0.9469 20.2697 0.7842
    ATV 36.5850 0.9959 31.5363 0.9912 26.7421 0.9859
    MC 36.7772 0.9928 32.8587 0.9897 28.1378 0.9859
    AMC 39.5339 0.9974 33.7164 0.9920 28.6771 0.9865
     | Show Table
    DownLoad: CSV

    Table 2.  SNR and SSIM of the natural images with different levels of white Gaussian noise

    $ 0.05 $ $ 0.1 $ $ 0.2 $
    SNR SSIM SNR SSIM SNR SSIM
    Cameraman $ (256\times256) $ TV 24.4261 0.9403 19.8933 0.8741 15.4665 0.7645
    HOTV 24.7059 0.9389 20.0565 0.8692 15.8390 0.7175
    TGV 24.8285 0.9407 20.2318 0.8660 16.0555 0.7590
    ATV 24.8216 0.9405 19.5423 0.8163 16.1089 0.7329
    MC 24.2884 0.9438 19.7386 0.8844 15.7260 0.8098
    AMC 24.8751 0.9452 20.2513 0.8882 16.8309 0.8301
    Peppers $ (256\times256) $ TV 23.4557 0.9509 19.0540 0.9031 15.3310 0.8472
    HOTV 23.6027 0.9482 19.4940 0.9123 15.4403 0.8566
    TGV 23.6712 0.9487 19.7737 0.9127 15.4945 0.8449
    ATV 23.5929 0.9508 19.3028 0.8929 15.7272 0.8423
    MC 23.4629 0.9523 19.4053 0.9137 15.9017 0.8659
    AMC 23.8056 0.9535 20.1047 0.9204 16.4739 0.8687
    Barbara $ (256\times256) $ TV 21.0820 0.9428 17.6311 0.8804 14.2412 0.8008
    HOTV 22.1298 0.9388 17.7057 0.8820 14.6666 0.8107
    TGV 21.7975 0.9455 17.7752 0.8663 14.7037 0.7913
    ATV 22.1881 0.9431 17.7769 0.8856 14.6581 0.8062
    MC 21.7009 0.9425 17.7023 0.8846 14.4138 0.8155
    AMC 22.2248 0.9458 17.7859 0.8878 14.7221 0.8178
    House $ (256\times256) $ TV 22.7621 0.9302 19.1033 0.8786 16.1751 0.8317
    HOTV 22.8041 0.9263 19.3590 0.8724 15.9549 0.8131
    TGV 22.7787 0.9268 19.4610 0.8772 15.2764 0.7463
    ATV 22.9113 0.9311 19.2093 0.8832 16.4647 0.8369
    MC 22.3283 0.9200 19.4971 0.8845 16.4433 0.8408
    AMC 23.0546 0.9313 19.7522 0.8857 16.9050 0.8483
    Lena $ (256\times256) $ TV 21.9420 0.9385 17.8192 0.8757 14.2216 0.7932
    HOTV 21.9930 0.9384 17.8427 0.8759 14.1715 0.8014
    TGV 21.7423 0.9405 17.9651 0.8751 14.0864 0.7777
    ATV 21.9480 0.9386 17.8277 0.8760 14.2312 0.8132
    MC 21.9025 0.9408 17.8036 0.8914 14.1209 0.8108
    AMC 22.1449 0.9413 17.9969 0.8924 14.3413 0.8196
    Parrot $ (256\times256) $ TV 25.1037 0.9472 20.7407 0.9100 17.3382 0.8376
    HOTV 23.6234 0.9489 19.5562 0.9107 15.5233 0.8419
    TGV 25.0737 0.9415 21.3407 0.9063 17.0111 0.7845
    ATV 25.1060 0.9472 20.8167 0.8796 17.5184 0.8586
    MC 25.1114 0.9472 21.0438 0.9125 17.5632 0.8706
    AMC 25.2144 0.9512 21.3952 0.9151 17.9631 0.8707
    Clown $ (256\times256) $ TV 25.4481 0.9541 21.0520 0.8967 17.2097 0.8068
    HOTV 25.3700 0.9460 21.0189 0.9019 17.2749 0.8228
    TGV 25.1128 0.9572 21.0398 0.8873 17.4512 0.8091
    ATV 25.4768 0.9501 21.0730 0.8969 17.4509 0.8104
    MC 25.2299 0.9557 21.0721 0.9066 16.9260 0.8210
    AMC 25.6417 0.9578 21.3543 0.9085 17.4636 0.8322
    Butterfly $ (256\times256) $ TV 24.8939 0.9692 20.3859 0.9285 16.0945 0.8755
    HOTV 24.8206 0.9663 20.1207 0.9394 15.5635 0.8768
    TGV 24.7823 0.9656 20.2884 0.9414 15.7252 0.8538
    ATV 24.8984 0.9692 20.3992 0.9288 16.3346 0.8908
    MC 24.5480 0.9713 20.5937 0.9457 16.5272 0.9099
    AMC 25.2768 0.9729 20.9997 0.9495 16.9803 0.9126
     | Show Table
    DownLoad: CSV

    Table 3.  The computation time of different models for the cameraman image with variance as $ \sigma = 0.05, 0.1, 0.2 $

    $ 0.05 $ $ 0.1 $ $ 0.2 $
    Time(s) TV 0.761 0.736 0.781
    HOTV 9.910 9.326 7.181
    TGV 18.405 19.147 18.587
    ATV 1.041 1.378 2.195
    MC 41.277 43.530 44.150
    AMC 42.806 43.994 42.667
     | Show Table
    DownLoad: CSV
  • [1] E. AltinsoyJ. Yang and E. Tu, An improved denoising of G-banding chromosome images using cascaded CNN and binary classification network, The Visual Computer, 38 (2022), 2139-2152.  doi: 10.1007/s00371-021-02273-5.
    [2] L. Ambrosio and S. Masnou, A direct variational approach to a problem arising in image reconstruction, Interfaces and Free Boundaries, 5 (2003), 63-81.  doi: 10.4171/IFB/72.
    [3] J. Bai and X.-C. Feng, Fractional-order anisotropic diffusion for image denoising, IEEE Transactions on Image Processing, 16 (2007), 2492-2502.  doi: 10.1109/TIP.2007.904971.
    [4] K. BrediesK. Kunisch and T. Pock, Total generalized variation, SIAM Journal on Imaging Sciences, 3 (2010), 492-526.  doi: 10.1137/090769521.
    [5] A. Chambolle and P.-L. Lions, Image recovery via total variation minimization and related problems, Numerische Mathematik, 76 (1997), 167-188.  doi: 10.1007/s002110050258.
    [6] T. F. Chan, S. Esedoglu and F. Park, A fourth order dual method for staircase reduction in texture extraction and image restoration problems, 2010 IEEE International Conference on Image Processing, 2010, 4137-4140. doi: 10.1109/ICIP.2010.5653199.
    [7] R. H. ChanH. LiangS. WeiM. Nikolova and X.-C. Tai, High-order total variation regularization approach for axially symmetric object tomography from a single radiograph, Inverse Problems and Imaging, 9 (2015), 55-77.  doi: 10.3934/ipi.2015.9.55.
    [8] T. ChanA. Marquina and P. Mulet, High-order total variation-based image restoration, SIAM Journal on Scientific Computing, 22 (2000), 503-516.  doi: 10.1137/S1064827598344169.
    [9] C. CruzA. FoiV. Katkovnik and K. Egiazarian, Nonlocality-reinforced convolutional neural networks for image denoising, IEEE Signal Processing Letters, 25 (2018), 1216-1220.  doi: 10.1109/LSP.2018.2850222.
    [10] J. DuanZ. QiuW. LuG. WangZ. Pan and L. Bai, An edge-weighted second order variational model for image decomposition, Digital Signal Processing, 49 (2016), 162-181.  doi: 10.1016/j.dsp.2015.10.010.
    [11] G. Gilboa and S. Osher, Nonlocal operators with applications to image processing, Multiscale Modeling and Simulation, 7 (2009), 1005-1028.  doi: 10.1137/070698592.
    [12] S. GoyalV. SinghA. Rani and N. Yadav, Multimodal image fusion and denoising in NSCT domain using CNN and FOTGV, Biomedical Signal Processing and Control, 71 (2022), 103214.  doi: 10.1016/j.bspc.2021.103214.
    [13] R. KimmelR. Malladi and N. Sochen, Images as embedded maps and minimal surfaces: Movies, color, texture, and volumetric medical images, International Journal of Computer Vision, 39 (2000), 111-129.  doi: 10.1023/A:1008171026419.
    [14] S. Lefkimmiatis and M. Unser, Poisson image reconstruction with Hessian Schatten-norm regularization, IEEE Transactions on Image Processing, 22 (2013), 4314-4327.  doi: 10.1109/TIP.2013.2271852.
    [15] S. LefkimmiatisJ. P. Ward and M. Unser, Hessian Schatten-norm regularization for linear inverse problems, IEEE Transactions on Image Processing, 22 (2013), 1873-1888.  doi: 10.1109/TIP.2013.2237919.
    [16] F. LiC. ShenJ. Fan and C. Shen, Image restoration combining a total variational filter and a fourth-order filter, Journal of Visual Communication and Image Representation, 18 (2007), 322-330.  doi: 10.1016/j.jvcir.2007.04.005.
    [17] J. Liu, R. W. Liu, J. Sun and T. Zeng, Rank-one prior: Real-time scene recovery, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022. doi: 10.1109/CVPR46437.2021.01456.
    [18] W. LuJ. DuanZ. QiuZ. PanR. W. Liu and L. Bai, Implementation of high-order variational models made easy for image processing, Mathematical Methods in the Applied Sciences, 39 (2016), 4208-4233.  doi: 10.1002/mma.3858.
    [19] M. LysakerA. Lundervold and X.-C. Tai, Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time, IEEE Transactions on Image Processing, 12 (2003), 1579-1590.  doi: 10.1109/TIP.2003.819229.
    [20] X. MaoC. Shen and Y. Yang, Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections, Advances in Neural Information Processing Systems, 29 (2016), 2802-2810. 
    [21] S. OsherA. Sole and L. Vese, Image decomposition and restoration using total variation minimization and the $H^{-1}$ norm, Multiscale Modeling and Simulation, 1 (2003), 349-370.  doi: 10.1137/S1540345902416247.
    [22] Z.-F. PangL.-Z. GuoY. Duan and J. Lu, Image restoration based on the minimized surface regularization, Computers and Mathematics with Applications, 76 (2018), 1893-1905.  doi: 10.1016/j.camwa.2018.07.037.
    [23] Z.-F. PangY.-M. ZhouT. Wu and D.-J. Li, Image denoising via a new anisotropic total-variation-based model, Signal Processing: Image Communication, 74 (2019), 140-152.  doi: 10.1016/j.image.2019.02.003.
    [24] K. Papafitsoros and C. B. Schonlieb, A combined first and second order variational approach for image reconstruction, Journal of Mathematical Imaging and Vision, 48 (2014), 308-338.  doi: 10.1007/s10851-013-0445-4.
    [25] Y. QuanY. ChenY. ShaoH. TengY. Xu and H. Ji, Image denoising using complex-valued deep CNN, Pattern Recognition, 111 (2021), 107639.  doi: 10.1016/j.patcog.2020.107639.
    [26] L. I. RudinS. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D: Nonlinear Phenomena, 60 (1992), 259-268.  doi: 10.1016/0167-2789(92)90242-F.
    [27] O. Scherzer, Denoising with higher order derivatives of bounded variation and an application to parameter estimation, Computing, 60 (1998), 1-27.  doi: 10.1007/BF02684327.
    [28] X.-C. TaiJ. Hahn and G. J. Chung, A fast algorithm for Eulers Elastica model using augmented Lagrangian method, SIAM Journal on Imaging Sciences, 4 (2011), 313-344.  doi: 10.1137/100803730.
    [29] C. TianY. XuW. ZuoB. DuC.-W. Lin and D. Zhang, Designing and training of a dual CNN for image denoising, Knowledge-Based Systems, 226 (2021), 106949.  doi: 10.1016/j.knosys.2021.106949.
    [30] L. A. Vese and S. J. Osher, Modeling textures with total variation minimization and oscillatory patterns in image processing, Journal of Scientific Computing, 19 (2003), 553-579.  doi: 10.1023/A:1025384832106.
    [31] G. Wang, J. Xu, Q. Dong and Z. Pan, Active contour model coupling with higher order diffusion for medical image segmentation, International Journal of Biomedical Imaging, 2014. doi: 10.1155/2014/237648.
    [32] Y. WangJ. YangW. Yin and Y. Zhang, A new alternating minimization algorithm for total variation image reconstruction, SIAM Journal on Imaging Sciences, 1 (2008), 248-272.  doi: 10.1137/080724265.
    [33] D. Yang and J. Sun, Bm3d-net: A convolutional neural network for transform-domain collaborative filtering, IEEE Signal Processing Letters, 25 (2017), 55-59.  doi: 10.1109/LSP.2017.2768660.
    [34] J. Yang, M. Ma, J. Zhang and C. Wang, Noise removal using an adaptive Euler's elastica-based model, The Visual Computer, 2022, 1-12. doi: 10.1007/s00371-022-02674-0.
    [35] Y.-L. You and M. Kaveh, Fourth-order partial differential equations for noise removal, IEEE Transactions on Image Processing, 9 (2000), 1723-1730.  doi: 10.1109/83.869184.
    [36] J. ZhangR. ChenC. Deng and S. Wang, Fast linearized augmented Lagrangian method for Euler's elastica model, Numerical Mathematics: Theory, Methods and Applications, 10 (2017), 98-115.  doi: 10.4208/nmtma.2017.m1611.
    [37] J. Zhang and Z. Wei, A class of fractional-order multi-scale variational models and alternating projection algorithm for image denoising, Applied Mathematical Modelling, 35 (2011), 2516-2528.  doi: 10.1016/j.apm.2010.11.049.
    [38] W. Zhu, Image denoising using $L^p$-norm of mean curvature of image surface, Journal of Scientific Computing, 83 (2020), No. 32, 26 pp. doi: 10.1007/s10915-020-01216-x.
    [39] W. Zhu and T. Chan, Image denoising using mean curvature of image surface, SIAM Journal on Imaging Sciences, 5 (2012), 1-32.  doi: 10.1137/110822268.
    [40] W. ZhuX.-C. Tai and T. Chan, Augmented Lagrangian method for a mean curvature based image denoising model, Inverse Problems and Imaging, 7 (2013), 1409-1432.  doi: 10.3934/ipi.2013.7.1409.
  • 加载中

Figures(10)

Tables(3)

SHARE

Article Metrics

HTML views(1847) PDF downloads(223) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return