\`x^2+y_1+z_12^34\`
Article Contents
Article Contents

A Majorization-Minimization Golub-Kahan bidiagonalization method for $ \ell_{2}-\ell_{q} $ mimimization with applications in image restorization

  • *Corresponding author: Guangxin Huang

    *Corresponding author: Guangxin Huang
Abstract / Introduction Full Text(HTML) Figure(11) / Table(6) Related Papers Cited by
  • An image restorization problem is often modelled as a discrete ill-posed problem. In general, its solution, even if it exists, is very sensitive to the perturbation in the data. Regularization methods reduces the sensitivity by replacing this problem with a minimization problem with a fidelity term and $ \ell_{q} $ regularization term. In order to improve the sparsity of the solution, we only consider the case of $ 0<q\leq1 $ in this paper. This paper presents a majorization-minimization Golub-Kahan bidiagonalization algorithm to solve this kind of minimization problems. The solution subspace is extended by the Golub-Kahan bidiagonalization process. The restarted case is also considered. The regularization parameter is determined by using the discrepancy principle. Several examples in image restorization are shown for the proposed methods.

    Mathematics Subject Classification: Primary: 58F15, 58F17; Secondary: 53C35.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Tested image $ \texttt{Lena}$: (a) Corrupted image (band = 4, sigma = 1, noise level $ \nu = 1\cdot 10^{-3} $), (b) original image, image restored by Algorithm 4 for the (c) $ \ell_2 $-$ \ell_{0.3} $ model, (d) $ \ell_2 $-$ \ell_{0.5} $ model, (e) $ \ell_2 $-$ \ell_{0.7} $ model, (f) $ \ell_2 $-$ \ell_{1} $ model

    Figure 2.  Tested image $ \texttt{satellite}$: (a) Corrupted image (band = 5, sigma = 1.5, noise level $ \nu = 1\cdot 10^{-2} $), (b) original image, image restored by (c) Algorithm 1, (d) Algorithm 4 for the $ \ell_{2} $-$ \ell_1 $ model

    Figure 3.  Example 4.2: The diagram of relative error $ e_k $ and number of iterations to Algorithms 1 and 4 for the $ \ell_{2}-\ell_{1} $ model with (a) band = 5, sigma = 1.5, noise level $ \nu = 1\cdot 10^{-2} $; (b) band = 3, sigma = 1, noise level $ \nu = 1\cdot 10^{-3} $

    Figure 4.  Tested image $ \texttt{QRcode}$: (a) Corrupted image (band = 7, sigma = 2, noise level $ \nu = 1\cdot 10^{-2} $), (b) original image, image restored by (c) Algorithm 1, (d) Algorithm 2, (e) Algorithm 4, (f) Algorithm 5 for the $ \ell_{2} $-$ \ell_{0.5} $ model

    Figure 5.  Example 4.3: The diagram of relative error $ e_k $ and number of iterations of Algorithms 1, 2, 4 and 5 for the $ \ell_{2}-\ell_{0.5} $ model with (a) band = 7, sigma = 2, noise level $ \nu = 1\cdot 10^{-2} $; (b) band = 4, sigma = 1, noise level $ \nu = 1\cdot 10^{-3} $

    Figure 6.  Tested image $ \texttt{MRI}$: (a) Corrupted image (band = 10, noise level $ \nu = 1\cdot 10^{-3} $), (b) original image, image restored by (c) Algorithm 2, (d) Algorithm 6, (e) Algorithm 5 for the $ \ell_{2} $-$ \ell_{1} $ model

    Figure 7.  Example 4.4: The diagram of relative error $ e_k $ and number of iterations of Algorithms 2, 5, 6 for the $ \ell_{2}-\ell_{1} $ model with band = 10 and noise level $ \nu = 1\cdot 10^{-3} $

    Figure 8.  Tested image $ \texttt{Lattice}$: (a) Corrupted image (band = 12, noise level $ \nu = 1\cdot 10^{-3} $), (b) original image, image restored by (c) Algorithm 2, (d) Algorithm 6, (e) Algorithm 5 for the $ \ell_{2} $-$ \ell_{1} $ model

    Figure 9.  Example 4.5: The diagram of relative error $ e_k $ and number of iterations to Algorithms 2, 5, 6 for the $ \ell_{2}-\ell_{1} $ model with band = 12, noise level $ \nu = 1\cdot 10^{-2} $

    Figure 10.  Tested image $ \texttt{CDUT}$: (a) Corrupted image (band = 14, noise level $ \nu = 1\cdot 10^{-2} $), (b) original image, image restored by (c) Algorithm 2, (d) Algorithm 6, (e) Algorithm 5 for the $ \ell_{2} $-$ \ell_{1} $ model

    Figure 11.  Example 4.6: The diagram of relative error $ e_k $ and number of iterations to Algorithms 2, 5, 6 for the $ \ell_{2}-\ell_{1} $ model with band = 14 and noise level $ \nu = 1\cdot 10^{-2} $

    Table 1.  Example 4.1: The comparison of Algorithm 4 for the $ \ell_2 $-$ \ell_{q} $ model with different $ q = 1 $, $ 0.7 $, $ 0.5 $ and $ 0.3 $ on test image $ \texttt{Lena}$ corrupted by different levels of blur and Gaussian noise

    band=5, sigma=2, noise level $ \nu = 1\cdot 10^{-2} $
    $ q $ $ \mu $ SNR relative error iterative number
    0.3 $ 1.0\cdot10^{-1} $ 13.55 $ 7.71\cdot 10^{-2} $ 26
    0.5 $ 1.0\cdot10^{-1} $ 13.55 $ 7.71\cdot 10^{-2} $ 26
    0.7 $ 1.0\cdot10^{-1} $ 13.55 $ 7.71\cdot 10^{-2} $ 26
    1 $ 1.0\cdot10^{-1} $ 13.55 $ 7.71\cdot 10^{-2} $ 27
    band=4, sigma=1, noise level $ \nu = 1\cdot 10^{-3} $
    $ q $ $ \mu $ SNR relative error iterative number
    0.3 $ 1.0\cdot 10^{-1} $ 24.69 $ 2.18\cdot 10^{-2} $ 126
    0.5 $ 1.0\cdot 10^{-1} $ 24.69 $ 2.18\cdot 10^{-2} $ 124
    0.7 $ 1.0\cdot 10^{-1} $ 24.69 $ 2.18\cdot 10^{-2} $ 121
    1 $ 1.0\cdot 10^{-1} $ 28.61 $ 2.18\cdot 10^{-2} $ 92
     | Show Table
    DownLoad: CSV

    Table 2.  Example 4.2: The comparison of Algorithms 1 and 4 for the $ \ell_2 $-$ \ell_{0.5} $ and $ \ell_{2} $-$ \ell_1 $ models on test image $ \texttt{satellite}$ corrupted by different levels of blur and Gaussian noise

    blur noise $ \mu $ SNR relative error iterative number
    band sigma Algo.1 Algo.4 Algo.1 Algo.4 Algo.1 Algo.4 Algo.1 Algo.4
    $ \ell_2 $-$ \ell_{0.5} $
    7 2 0.05 $ 1.5\cdot 10^{-2} $ $ 9.7\cdot 10^{-3} $ 12.67 12.78 $ 2.22\cdot 10^{-1} $ $ 2.20\cdot 10^{-1} $ 11 9
    5 1.5 0.01 $ 1.5\cdot 10^{-2} $ $ 2.3\cdot 10^{-3} $ 14.51 15.39 $ 1.80\cdot 10^{-1} $ $ 1.63\cdot 10^{-1} $ 44 47
    3 1 0.001 $ 3.0\cdot 10^{-2} $ $ 1.9\cdot 10^{-4} $ 16.80 21.14 $ 1.45\cdot 10^{-1} $ $ 8.77\cdot 10^{-2} $ 114 85
    $ \ell_2 $-$ \ell_{1} $
    7 2 0.05 $ 1.5\cdot 10^{-2} $ $ 9.7\cdot 10^{-3} $ 12.70 12.82 $ 2.22\cdot 10^{-1} $ $ 2.19\cdot 10^{-1} $ 13 10
    5 1.5 0.01 $ 1.5\cdot 10^{-2} $ $ 2.3\cdot 10^{-3} $ 14.89 15.76 $ 1.80\cdot 10^{-1} $ $ 1.63\cdot 10^{-1} $ 45 50
    3 1 0.001 $ 3.0\cdot 10^{-2} $ $ 1.9\cdot 10^{-4} $ 16.80 21.23 $ 1.45\cdot 10^{-1} $ $ 8.68\cdot 10^{-2} $ 109 92
     | Show Table
    DownLoad: CSV

    Table 3.  Example 4.3: The comparison of Algorithms 1, 2, 4 and 5 for the $ \ell_2 $-$ \ell_1 $ and $ \ell_{2} $-$ \ell_{0.5} $ models on test image $ \texttt{QRcode}$ corrupted by different levels of blur and Gaussian noise

    $ \ell_2 $-$ \ell_{0.5} $
    blur noise $ \mu $ SNR
    band sigma Algo.1 Algo.2 Algo.4 Algo.5 Algo.1 Algo.2 Algo.4 Algo.5
    7 2 0.01 $ 2.1\cdot 10^{-1} $ $ 2.1\cdot 10^{-1} $ $ 2.2\cdot10^{-3} $ $ 1.0\cdot10^{-2} $ 9.44 10.98 13.31 21.48
    4 1 0.001 $ 1.6\cdot 10^{-1} $ $ 1.6\cdot 10^{-1} $ $ 5.8\cdot 10^{-4} $ $ 5.8\cdot 10^{-4} $ 13.49 22.77 24.67 Inf
    PSNR SSIM
    Algo.1 Algo.2 Algo.4 Algo.5 Algo.1 Algo.2 Algo.4 Algo.5
    7 2 0.01 13.09 16.34 18.57 25.52 0.490 0.650 0.519 0.878
    4 1 0.001 16.70 26.99 29.13 Inf 0.735 0.953 0.753 1
    relative error iterative number
    Algo.1 Algo.2 Algo.4 Algo.5 Algo.1 Algo.2 Algo.4 Algo.5
    7 2 0.01 $ 3.37\cdot 10^{-1} $ $ 2.83\cdot 10^{-1} $ $ 2.16\cdot 10^{-1} $ $ 8.44\cdot 10^{-2} $ 3 34 90 26
    4 1 0.001 $ 2.12\cdot 10^{-1} $ $ 7.27\cdot 10^{-2} $ $ 5.84\cdot 10^{-2} $ 0 3 49 136 25
    $ \ell_2 $-$ \ell_{1} $
    blur noise $ \mu $ SNR
    band sigma Algo.1 Algo.2 Algo.4 Algo.5 Algo.1 Algo.2 Algo.4 Algo.5
    7 2 0.01 $ 2.1\cdot 10^{-1} $ $ 2.1\cdot 10^{-2} $ $ 1.6\cdot10^{-3} $ $ 1.4\cdot 10^{-2} $ 9.21 10.63 13.34 20.97
    4 1 0.001 $ 1.6\cdot 10^{-1} $ $ 1.6\cdot 10^{-1} $ $ 5.8\cdot10^{-4} $ $ 5.8\cdot 10^{-4} $ 13.10 22.76 24.10 Inf
    PSNR SSIM
    Algo.1 Algo.2 Algo.4 Algo.5 Algo.1 Algo.2 Algo.4 Algo.5
    7 2 0.01 12.58 16.00 18.51 25.00 0.488 0.629 0.508 0.875
    4 1 0.001 16.16 26.98 28.64 Inf 0.740 0.953 0.752 1
    relative error iterative number
    Algo.1 Algo.2 Algo.4 Algo.5 Algo.1 Algo.2 Algo.4 Algo.5
    7 2 0.01 $ 3.46\cdot 10^{-1} $ $ 2.94\cdot 10^{-1} $ $ 2.15\cdot 10^{-1} $ $ 8.94\cdot 10^{-2} $ 3 35 90 26
    4 1 0.001 $ 2.21\cdot 10^{-1} $ $ 7.28\cdot 10^{-2} $ $ 6.24\cdot 10^{-2} $ 0 3 49 135 25
     | Show Table
    DownLoad: CSV

    Table 4.  Example 4.4: The comparison of the effects of Algorithms 2, 5, 6 for the $ \ell_2 $-$ \ell_1 $ model on test image $\texttt{MRI} $ corrupted by different levels of blur and Gaussian noise

    $ \ell_2 $-$ \ell_{1} $
    noise $ \mu $ SNR PSNR
    Algo.2 Algo.6 Algo.5 Algo.2 Algo.6 Algo.5 Algo.2 Algo.6 Algo.5
    0.01 $ 9.5\cdot 10^{-3} $ $ 6.3\cdot 10^{-1} $ $ 7.0\cdot 10^{-1} $ 17.70 11.99 18.37 28.75 24.12 29.55
    0.001 $ 3.0\cdot 10^{-2} $ $ 6.9\cdot 10^{-3} $ $ 1.3\cdot 10^{-3} $ 25.54 23.85 27.42 36.70 35.31 38.71
    SSIM relative error iterative number
    Algo.2 Algo.6 Algo.5 Algo.2 Algo.6 Algo.5 Algo.2 Algo.6 Algo.5
    0.01 0.473 0.431 0.483 $ 1.30\cdot 10^{-1} $ $ 2.51\cdot 10^{-1} $ $ 1.21\cdot 10^{-1} $ 50 150 134
    0.001 0.711 0.700 0.715 $ 5.28\cdot 10^{-2} $ $ 6.42\cdot 10^{-2} $ $ 4.26\cdot 10^{-2} $ 137 150 142
     | Show Table
    DownLoad: CSV

    Table 5.  Example 4.5: The comparison of the effects of Algorithms 2, 5, 6 for the $ \ell_2 $-$ \ell_1 $ model on test image $ \texttt{Lattice}$ corrupted by different levels of blur and Gaussian noise

    $ \ell_2 $-$ \ell_{1} $
    noise $ \mu $ SNR PSNR
    Algo.2 Algo.6 Algo.5 Algo.2 Algo.6 Algo.5 Algo.2 Algo.6 Algo.5
    0.01 $ 1.1\cdot 10^{-2} $ $ 3.3\cdot 10^{-3} $ $ 1.0\cdot 10^{-2} $ 15.30 17.96 20.54 22.30 26.58 27.42
    0.001 $ 2.6\cdot 10^{-3} $ $ 1.5\cdot 10^{-4} $ $ 2.3\cdot 10^{-5} $ 17.77 22.29 Inf 24.46 29.38 Inf
    SSIM relative error iterative number
    Algo.2 Algo.6 Algo.5 Algo.2 Algo.6 Algo.5 Algo.2 Algo.6 Algo.5
    0.01 0.707 0.566 0.736 $ 1.72\cdot 10^{-1} $ $ 1.27\cdot 10^{-1} $ $ 9.40\cdot 10^{-2} $ 49 150 47
    0.001 0.895 0.668 1 $ 1.29\cdot 10^{-1} $ $ 7.68\cdot 10^{-2} $ 0 74 150 25
     | Show Table
    DownLoad: CSV

    Table 6.  Example 4.6: The comparison of the effects of Algorithms 2, 5, 6 for the $ \ell_2 $-$ \ell_1 $ model on test image $ \texttt{CDUT}$ corrupted by different levels of blur and Gaussian noise

    $ \ell_2 $-$ \ell_{1} $
    noise $ \mu $ SNR PSNR
    Algo.2 Algo.6 Algo.5 Algo.2 Algo.6 Algo.5 Algo.2 Algo.6 Algo.5
    0.03 $ 2.4\cdot 10^{-2} $ $ 1.3\cdot 10^{-3} $ $ 5.8\cdot 10^{-2} $ 13.01 11.69 18.17 25.29 25.27 29.76
    0.01 $ 4.4\cdot 10^{-2} $ $ 5.0\cdot 10^{-4} $ $ 1.0\cdot 10^{-30} $ 24.98 20.68 Inf 36.74 32.87 Inf
    SSIM relative error iterative number
    Algo.2 Algo.6 Algo.5 Algo.2 Algo.6 Algo.5 Algo.2 Algo.6 Algo.5
    0.03 0.704 0.430 0.919 $ 2.24\cdot 10^{-1} $ $ 2.60\cdot 10^{-1} $ $ 1.23\cdot 10^{-1} $ 49 150 26
    0.01 0.979 0.644 1 $ 5.63\cdot 10^{-2} $ $ 9.24\cdot 10^{-2} $ 0 49 150 25
     | Show Table
    DownLoad: CSV
  • [1] A. BucciniG. Huang and L. Reichel, On the choice of regularization matrix for an $\ell_ 2-\ell_q$ minimization method for image restoration, Appl. Numer. Math., 164 (2021), 211-221.  doi: 10.1016/j.apnum.2020.11.004.
    [2] A. Buccini and L. Reichel, An $\ell_ 2-\ell_q$ regularization method for large discrete ill-posed problems, J. Sci. Comput., 78 (2019), 1526-1549.  doi: 10.1007/s10915-018-0816-5.
    [3] D. Calvetti and L. Reichel, Tikhonov regularization of large linear problems, BIT Numer. Math., 43 (2003), 263-283.  doi: 10.1023/A:1026083619097.
    [4] J. Cornelis, N. Schenkels and W. Vanroose, Projected Newton method for noise constrained Tikhonov regularization, Inverse. Probl., 36 (2020), 055002, 28 pp. doi: 10.1088/1361-6420/ab7d2b.
    [5] J. Cornelis and W. Vanroose, Projected Newton method for noise constrained $\ell_p$ regularization, Inverse. Probl., 36 (2020), 125004, 32 pp. doi: 10.1088/1361-6420/abb2fc.
    [6] M. DonatelliA. Neuman and L. Reichel, Square regularization matrices for large linear discrete ill-posed problems, Numer. Linear. Algebr., 19 (2012), 896-913.  doi: 10.1002/nla.1833.
    [7] L. DykesG. HuangS. Noschese and L. Reichel, Regularization matrices for discrete ill-posed problems in several space-dimensions, Numer. Linear Algebr., 25 (2018), 1-16.  doi: 10.1002/nla.2163.
    [8] S. GazzolaP. Novati and M. R. Russo, On Krylov projection methods and Tikhonov regularization, Electron. Trans. Numer. Anal, 44 (2015), 83-123. 
    [9] S. GazzolaE. Onunwor and L. Reichel, On the Lanczos and Golub-Kahan reduction methods applied to discrete ill-posed problems, Numer. Linear. Algebr., 23 (2016), 187-204.  doi: 10.1002/nla.2020.
    [10] P. C. Hansen, Regularization tools version 4.0 for Matlab 7.3, Numer. Algorithms, 46 (2007), 189-194.  doi: 10.1007/s11075-007-9136-9.
    [11] P. C. Hansen, Discrete Inverse Problems: Insight and Algorithms, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2010. doi: 10.1137/1.9780898718836.
    [12] P. C. Hansen, Rank-Deficient and Discrete Ill-posed Problems: Numerical Aspects of Linear Inversion, SIAM Monographs on Mathematical Modeling and Computation. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1998. doi: 10.1137/1.9780898719697.
    [13] M. E. Hochstenbach and L. Reichel, An iterative method for Tikhonov regularization with a general linear regularization operator, J. Integral. Equ. Appl., 22 (2010), 465-482.  doi: 10.1216/JIE-2010-22-3-465.
    [14] G. HuangA. Lanza and S. Morigi, Majorization minimization generalized Krylov subspace methods for $\ell_p-\ell_q$ optimization applied to image restoration, BIT Numer. Math., 57 (2017), 351-378.  doi: 10.1007/s10543-016-0643-8.
    [15] G. HuangL. Reichel and F. Yin, Projected nonstationary iterated Tikhonov regularization, BIT Numer. Math., 56 (2016), 467-487.  doi: 10.1007/s10543-015-0568-7.
    [16] J. LampeL. Reichel and H. Voss, Large-scale Tikhonov regularization via reduction by orthogonal projection, Linear. Algebra. Appl., 436 (2012), 2845-2865.  doi: 10.1016/j.laa.2011.07.019.
    [17] A. LanzaS. MorigiL. Reichel and F. Sgallari, A generalized Krylov subspace method for $\ell_p-\ell_q$ minimization, SIAM J. Sci. Comput., 37 (2015), 30-50.  doi: 10.1137/140967982.
    [18] P. Novati and M. R. Russo, Adaptive Arnoldi-Tikhonov regularization for image restoration, Numer. Algorithms, 65 (2014), 745-757.  doi: 10.1007/s11075-013-9712-0.
  • 加载中

Figures(11)

Tables(6)

SHARE

Article Metrics

HTML views(1832) PDF downloads(240) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return