\`x^2+y_1+z_12^34\`
Article Contents
Article Contents

Global existence and asymptotic behavior for semilinear damped wave equations on measure spaces

  • *Corresponding author: Koichi Taniguchi

    *Corresponding author: Koichi Taniguchi 

This work was supported by JSPS KAKENHI Grant Numbers JP16K17625, JP18H01132, JP19K14581, JP19J00206, JP20K14346, and JST CREST Grant Number JPMJCR1913

Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • The purpose of this paper is to prove the small data global existence of solutions to the semilinear damped wave equation

    $ \partial_t^2 u + Au + \partial_t u = |u|^{p-1}u $

    on a measure space $ X $ with a self-adjoint operator $ A $ on $ L^2(X) $. Under a certain decay estimate on the corresponding heat semigroup, we establish the linear estimates which generalize the so-called Matsumura estimates. Our approach is based on a direct spectral analysis analogous to the Fourier analysis. The self-adjoint operators treated in this paper include some important examples such as the Laplace operators on Euclidean spaces, the Dirichlet Laplacian on an arbitrary open set, the Robin Laplacian on an exterior domain, the Schrödinger operator, the elliptic operator, the Laplacian on Sierpinski gasket, and the fractional Laplacian.

    Mathematics Subject Classification: Primary: 35L15, 35L70, 35L90; Secondary: 35A01, 35B40.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] S. Albeverio, F. Gesztesy, R. Høegh-Krohn and H. Holden, Solvable models in quantum mechanics, Texts and Monographs in Physics, Springer-Verlag, New York, (1988). doi: 10.1007/978-3-642-88201-2.
    [2] M. T. Barlow, Diffusions on fractals, Lectures on probability theory and statistics (Saint-Flour, 1995), Lecture Notes in Math., vol. 1690, Springer, Berlin, (1998), 1-121. doi: 10.1007/BFb0092537.
    [3] H.-Q. Bui, T. A. Bui and X. T. Duong, Weighted Besov and Triebel-Lizorkin spaces associated with operators and applications, Forum Math. Sigma, 5 (2020), Paper No. e11, 95. doi: 10.1017/fms.2020.6.
    [4] T. A. BuiP. D'Ancona and F. Nicola, Sharp $L^p$ estimates for Schrödinger groups on spaces of homogeneous type, Rev. Mat. Iberoam., 36 (2020), 455-484.  doi: 10.4171/rmi/1136.
    [5] Z. Q. ChenR. J. Williams and Z. Zhao, A Sobolev inequality and Neumann heat kernel estimate for unbounded domains, Math. Res. Lett., 1 (1994), 177-184.  doi: 10.4310/MRL.1994.v1.n2.a5.
    [6] R. Chill and A. Haraux, An optimal estimate for the difference of solutions of two abstract evolution equations, J. Differential Equations, 193 (2003), 385-395.  doi: 10.1016/S0022-0396(03)00057-3.
    [7] E. B. Davies, Heat kernels and spectral theory, Cambridge Tracts in Mathematics, vol. 92, Cambridge University Press, Cambridge, (1989). doi: 10.1017/CBO9780511566158.
    [8] H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_{t} = \Delta u+u^{1+\alpha}$, J. Fac. Sci. Univ. Tokyo Sect. I, 13 (1966), 109-124. 
    [9] K. FujiwaraM. Ikeda and Y. Wakasugi, The Cauchy problem of the semilinear second order evolution equation with fractional Laplacian and damping, Nonlinear Differ. Equ. Appl., 28 (2021), 40.  doi: 10.1007/s00030-021-00723-6.
    [10] V. Georgiev and A. Palmieri, Critical exponent of Fujita-type for the semilinear damped wave equation on the Heisenberg group with power nonlinearity, J. Differential Equations, 269 (2020), 420-448.  doi: 10.1016/j.jde.2019.12.009.
    [11] N. HayashiE. I. Kaikina and P. I. Naumkin, Damped wave equation with super critical semilinearities, Differential Integral Equations, 17 (2004), 637-652. 
    [12] J. HolmerJ. Marzuola and M. Zworski, Fast soliton scattering by delta impurities, Comm. Math. Phys., 274 (2007), 187-216.  doi: 10.1007/s00220-007-0261-z.
    [13] T. Hosono and T. Ogawa, Large time behavior and $L^p$-$L^q$ estimate of solutions of 2-dimensional semilinear damped wave equations, J. Differential Equations, 203 (2004), 82-118.  doi: 10.1016/j.jde.2004.03.034.
    [14] M. IkedaT. InuiM. Okamoto and Y. Wakasugi, $L^p$-$L^q$ estimates for the damped wave equation and the critical exponent for the semilinear problem with slowly decaying data, Commun. Pure Appl. Anal., 18 (2019), 1967-2008.  doi: 10.3934/cpaa.2019090.
    [15] M. Ikeda and M. Sobajima, Sharp upper bound for lifespan of solutions to some critical semilinear parabolic, dispersive and hyperbolic equations via a test function method, Nonlinear Anal., 182 (2019), 57-74.  doi: 10.1016/j.na.2018.12.009.
    [16] R. Ikehata, Diffusion phenomenon for linear dissipative wave equations in an exterior domain, J. Differential Equations, 186 (2002), 633-651.  doi: 10.1016/S0022-0396(02)00008-6.
    [17] R. Ikehata, Fast decay of solutions for linear wave equations with dissipation localized near infinity in an exterior domain, J. Differential Equations, 188 (2003), 390-405.  doi: 10.1016/S0022-0396(02)00101-8.
    [18] R. Ikehata and K. Nishihara, Diffusion phenomenon for second order linear evolution equations, Studia Math., 158 (2003), 153-161.  doi: 10.4064/sm158-2-4.
    [19] R. Ikehata and M. Ohta, Critical exponents for semilinear dissipative wave equations in ${\bf R}^N$, J. Math. Anal. Appl., 269 (2002), 87-97.  doi: 10.1016/S0022-247X(02)00021-5.
    [20] R. Ikehata and K. Tanizawa, Global existence of solutions for semilinear damped wave equations in ${\bf R}^N$ with noncompactly supported initial data, Nonlinear Anal., 61 (2005), 1189-1208.  doi: 10.1016/j.na.2005.01.097.
    [21] T. Iwabuchi, The semigroup generated by the Dirichlet Laplacian of fractional order, Anal. PDE, 11 (2018), 683-703.  doi: 10.2140/apde.2018.11.683.
    [22] T. IwabuchiT. Matsuyama and K. Taniguchi, Boundedness of spectral multipliers for Schrödinger operators on open sets, Rev. Mat. Iberoam., 34 (2018), 1277-1322.  doi: 10.4171/rmi/1024.
    [23] T. IwabuchiT. Matsuyama and K. Taniguchi, Besov spaces on open sets, Bull. Sci. Math., 152 (2019), 93-149.  doi: 10.1016/j.bulsci.2019.01.008.
    [24] H. Kovařík and D. Mugnolo, Heat kernel estimates for Schrödinger operators on exterior domains with Robin boundary conditions, Potential Anal., 48 (2018), 159-180.  doi: 10.1007/s11118-017-9629-7.
    [25] A. Matsumura, On the asymptotic behavior of solutions of semi-linear wave equations, Publ. Res. Inst. Math. Sci., 12 (1976/77), 169-189.  doi: 10.2977/prims/1195190962.
    [26] T. Narazaki, $L^p$-$L^q$ estimates for damped wave equations and their applications to semi-linear problem, J. Math. Soc. Japan, 56 (2004), 585-626.  doi: 10.2969/jmsj/1191418647.
    [27] K. Nishihara, $L^p$-$L^q$ estimates of solutions to the damped wave equation in 3-dimensional space and their application, Math. Z., 244 (2003), 631-649.  doi: 10.1007/s00209-003-0516-0.
    [28] H. Nishiyama, Remarks on the asymptotic behavior of the solution to damped wave equations, J. Differential Equations, 261 (2016), 3893-3940.  doi: 10.1016/j.jde.2016.06.014.
    [29] K. Ono, Decay estimates for dissipative wave equations in exterior domains, J. Math. Anal. Appl., 286 (2003), 540-562.  doi: 10.1016/S0022-247X(03)00489-X.
    [30] E. M. Ouhabaz, Analysis of heat equations on domains, London Mathematical Society Monographs Series, vol. 31, Princeton University Press, Princeton, NJ, (2005).
    [31] A. Palmieri, Decay estimates for the linear damped wave equation on the Heisenberg group, J. Funct. Anal., 279 (2020), 108721, 23. doi: 10.1016/j.jfa.2020.108721.
    [32] A. Palmieri, On the blow-up of solutions to semilinear damped wave equations with power nonlinearity in compact Lie groups, J. Differential Equations, 281 (2021), 85-104.  doi: 10.1016/j.jde.2021.02.002.
    [33] P. RaduG. Todorova and B. Yordanov, Diffusion phenomenon in Hilbert spaces and applications, J. Differential Equations, 250 (2011), 4200-4218.  doi: 10.1016/j.jde.2011.01.024.
    [34] P. RaduG. Todorova and B. Yordanov, The generalized diffusion phenomenon and applications, SIAM J. Math. Anal., 48 (2016), 174-203.  doi: 10.1137/15M101525X.
    [35] M. Ruzhansky and N. Tokmagambetov, On semilinear damped wave equations for positive operators. I. Discrete spectrum, Differential Integral Equations, 32 (2019), 455-478. 
    [36] J. -I. Segata, Final state problem for the cubic semilinear Schrödinger equation with repulsive delta potential, Comm. Partial Differential Equations, 40 (2015), 309-328.  doi: 10.1080/03605302.2014.930753.
    [37] B. Simon, Schrödinger semigroups, Bull. Amer. Math. Soc. (N.S.), 7 (1982), 447-526.  doi: 10.1090/S0273-0979-1982-15041-8.
    [38] M. Sobajima, Global existence of solutions to semilinear damped wave equation with slowly decaying initial data in exterior domain, Differential Integral Equations, 32 (2019), 615-638. 
    [39] M. Sobajima, Higher order asymptotic expansion of solutions to abstract linear hyperbolic equations, Math. Ann., 380 (2021), 1-19.  doi: 10.1007/s00208-020-01959-w.
    [40] H. Takeda, Global existence of solutions for higher order semilinear damped wave equations, Discrete Contin. Dyn. Syst., Dynamical Systems, Differential Equations and Applications. 8th AIMS Conference. Suppl. Vol. II, (2011), 1358-1367.
    [41] M. Taylor and G. Todorova, The diffusion phenomenon for dissipative wave equations in metric measure spaces, J. Differential Equations, 269 (2020), 10792-10838.  doi: 10.1016/j.jde.2020.07.018.
    [42] G. Todorova and B. Yordanov, Critical exponent for a semilinear wave equation with damping, J. Differential Equations, 174 (2001), 464-489.  doi: 10.1006/jdeq.2000.3933.
    [43] Q. S. Zhang, A blow-up result for a semilinear wave equation with damping: The critical case, C. R. Acad. Sci. Paris Sér. I Math., 333 (2001), 109-114.  doi: 10.1016/S0764-4442(01)01999-1.
  • 加载中
SHARE

Article Metrics

HTML views(796) PDF downloads(163) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return