\`x^2+y_1+z_12^34\`
Article Contents
Article Contents

Motion planning problem for a class of hyperbolic PDEs

  • *Corresponding author: Abdelhadi Elharfi

    *Corresponding author: Abdelhadi Elharfi 
Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • The purpose of this paper is to investigate the motion planning problem (MPP) for a class of hyperbolic PDEs with a boundary control. Precisely, we aim to construct an input control leading the state output to track a given (sufficiently smooth) target trajectory. First, we establish a solution of the MPP in the form of a boundary state-feedback law. Second, we provide an explicit expression of the whole state of the resulting closed-loop. Third, we furnish an explicit formula of the MP control via the target trajectory and the solution of an appropriate PDE. Besides, the provided control leads to a complete matching of the output with the predefined trajectory at any instant. The control problem is reformulated in the context of operator semigroup theory and solved using the Laplace transform of a suitable input-output function.

    Mathematics Subject Classification: Primary: 93C05, 93C20; Secondary: 47D06.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] K. Ammari and S. Gerbi, Interior feedback stabilization of wave equations with dynamic boundary delay, Journal of Analysis and its Applications, 36 (2017), 297-327.  doi: 10.4171/ZAA/1590.
    [2] W. B. DunbarN. PetitP. Rouchon and P. Martin, Motion planning for anonlinear Stefan problem, ESAIM Control, Optimisation and Calculus of Variations, 9 (2003), 275-296.  doi: 10.1051/cocv:2003013.
    [3] A. Elharfi, Exponential stabilization of a class of 1-D hyperbolic PDEs, J. Evol. Equ., 16 (2016), 665-679.  doi: 10.1007/s00028-015-0317-z.
    [4] A. Elharfi, Exponential stabilization and motion planning of an overhead crane system, IMA Journal of Mathematical Control and Information, 34 (2017), 1299-1321.  doi: 10.1093/imamci/dnw026.
    [5] K.-J. Engel and R. Nagel, One-parameter Semigroups for Linear Evolution Equations, Encyclopedia of Mathematics and its Applications. Springer–Verlag, New York, 2000.
    [6] P. Grabowski, The motion planning problem and exponential stabilization of a heavy chain, Part Ⅰ, International Journal of Control, 82 (2009), 1539-1563.  doi: 10.1080/00207170802588188.
    [7] L. F. Ho and D. L. Russell, Admissable input elements for systems in Hilbert space and a Carleson measure criterion, SIAM J. Control Optim., 21 (1983), 614-640.  doi: 10.1137/0321037.
    [8] L. Kavraki, M. N. Kolountzakis and J. C. Latombe, Analysis of probabilistic roadmaps for path planning, IEEE International Conference on Robotics and Automation, Minneapolis, MN, USA, (1996), 3020-3026. doi: 10.1109/ROBOT.1996.509171.
    [9] V. Kugi and D. Thull, Infinite-dimensional decoupling control of the tip position and the tip angle of a composite piezoelectric beam withtip mass, Control and Observer Design for Nonlinear Finite- and Infinite-Dimensional Systems, 322 of Lecture Notes in Control and Information Sciences, Berlin: Springer-Verlag, (2005), 351-368.
    [10] G. Lafferrier'e and H. J. Sussmann, A differential geometric approach to motion planning, Nonholonomic Motion Planning, The Kluwer International Series in Engineering and Computer Science, 192 (1992), 235-270.  doi: 10.1007/978-1-4615-3176-0_7.
    [11] F. Lamiraux and J.-P. Lanmond, On the expected complexity of random path planning, Proc. IEEE Intern. Conf. on Robotics and Automation, Mineapolis, USA, (1996), 3014-3019.
    [12] B. Laroche and P. Martin, Motion planning for 1-D linear partial differential equations, Algebraic Methods in Flatness, Signal Processing and State Estimation, (2003), 55-76.
    [13] B. LarocheP. Martin and P. Rouchon, Motion planning for the heat equation, International Journal of Robust and Nonlinear Control, 10 (2000), 629-643.  doi: 10.1002/1099-1239(20000715)10:8<629::AID-RNC502>3.0.CO;2-N.
    [14] I. Lasiecka and R. Triggiani, Regularity of hyperbolic equations under L2 (0, T; L2 (T))-boundary terms, Appl. Math. Optim., 10 (1983), 275-286.  doi: 10.1007/BF01448390.
    [15] I. Lasiecka and R. Triggiani, Trace regularity of the solutions of the wave equation with homogeneous Neumann boundary conditions and data supported away from the boundary, Journal Of Mathematical Analysis And Applications, 141 (1989), 49-71.  doi: 10.1016/0022-247X(89)90205-9.
    [16] W. Liu, Boundary feedback stabilization of an unstable heat equation, SIAM J. Control Optim., 42 (2003), 1033-1043.  doi: 10.1137/S0363012902402414.
    [17] T. Meurer, Control of Higher-Dimensional PDEs: Flatness and Backstepping Designs, Communications and Control Engineering Series. Springer, Heidelberg, 2013. doi: 10.1007/978-3-642-30015-8.
    [18] S. Monaco and D. Normand-Cyrot, An introduction to motion planning under multirate digital control, 31st IEEE Conf. on Decision and Control, Tucson, AZ, (1992), 1780-1785.
    [19] R. M. Murray and S. S. Sastry, Nonholonomic motion planning: Steering using sinusoids, IEEE Trans. on Automatic Control, 38 (1993), 700-716.  doi: 10.1109/9.277235.
    [20] F. Ollivier and A. Sedoglavic, A generalization of flatness to nonlinear systems of partial differential equations, Application to the command of a flexible rod, Proceedings of the 5th IFAC Symposium on Nonlinear Control Systems, 1 (2001), 196-200. 
    [21] N. Petit and D. Del Vecchio, Boundary control for an industrial under-actuated tubular chemical reactor, Journal of Process Control, 15 (2005), 771-784. 
    [22] N. Petit and P. Rouchon, Flatness of heavy chain systems, SIAM J. Control Optim., 40 (2001), 475-492.  doi: 10.1137/S0363012900368636.
    [23] A. PisanoY. Orlov and E. Usai, Tracking control of the uncertain heat and wave equation via power-fractional and slidingmode techniques, SIAM J. Control Optim., 49 (2011), 363-382.  doi: 10.1137/090781140.
    [24] A. J. Pritchard and S. Townley, A Stability Radius for Infinite Dimensional Systems, Proceedings, Vorau, Austria, 1986, Lecture Notes in Control and Information Sciences 102, Springer-Verlag, Berlin, New York, 1987.
    [25] P. Rouchon, Motion planning, equivalence, infinite dimensional systems., International Journal of Applied Mathematics and Computer Science, 11 (2001), 165-188. 
    [26] J. Rudolph and F. Woittennek, Motion planning and open loop control design for linear distributed parameter systems with lumped controls, Int. J. Control, 81 (2008), 445-472.  doi: 10.1080/00207170701561435.
    [27] D. Salamon, Infinite-dimensional linear systems with unbounded control and observation: a functional analytic approach, Trans. Amer. Math. Soc., 300 (1987), 383-431.  doi: 10.2307/2000351.
    [28] A. SmyshlyaevE. Cerpa and M. Krstic, Boundary stabilization of a 1-d wave equation with in-domain antidamping, SIAM J. Contr. Optim., 48 (2010), 4014-4031.  doi: 10.1137/080742646.
    [29] O. J. Sordalen and C. Canudas de Wit, Exponential control law for a mobile robot: Extension to path following, IEEE Trans. on Robotics and Automation, 9 (1993), 837-842. 
    [30] M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser, Basel, 2009. doi: 10.1007/978-3-7643-8994-9.
    [31] G. Weiss, Admissibility of unbounded control operators, SIAM J. Contr. Optim., 27 (1989), 527-545. doi: 10.1137/0327028.
    [32] G. B. Witham, Linear and Nonlinear Waves, Pure and Applied Mathematics, Wiley-Interscience, New York-London-Sydney, 1974.
  • 加载中
SHARE

Article Metrics

HTML views(2139) PDF downloads(141) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return