\`x^2+y_1+z_12^34\`
Article Contents
Article Contents

A qualitative analysis of a second-order anisotropic phase-field transition system endowed with a general class of nonlinear dynamic boundary conditions

Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • The paper is concerned with the study of a nonlinear second-order anisotropic phase-field transition system of Caginalp type, subject to nonlinear and in-homogeneous dynamic boundary conditions (in both unknown functions). Under certain hypothesis on the input data: $ f_{_1}(t,x) $, $ f_{_2}(t,x) $, $ w_{_1}(t,x) $, $ w_{_2}(t,x) $, $ u_0(x) $, $ \alpha_0(x) $, $ \varphi_0(x) $ and $ \xi_0(x) $, we prove the well-posedness (the existence, a priori estimates, regularity and uniqueness) of a classical solution in the Sobolev space $ W^{1,2}_p(Q)\times W^{1,2}_p(\Sigma) $, $ W^{1,2}_\nu(Q)\times W^{1,2}_p(\Sigma) $. Here we extend the previous results concerned with nonlinearity of cubic type, allowing to the present mathematical model to be more capable for describing the complexity of a wide class of real physical phenomena (moving interface problems, image processing, the phase changes at the boundary $ \partial\Omega $, etc.).

    Mathematics Subject Classification: Primary: 35Bxx; Secondary: 35K55, 35K60, 35Qxx.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] F. Andreu-Vaillo, J. M. Mazón, J. D. Rossi and J. J. Toledo-Melero, Nonlocal Diffusion Problems, in: Mathematical Surveys and Monographs, 165. American Mathematical Society, 2010. doi: 10.1090/surv/165.
    [2] T. BarbuA. Miranville and C. Moroşanu, A qualitative analysis and numerical simulations of a nonlinear second-order anisotropic diffusion problem with non-homogeneous Cauchy-Neumann boundary conditions, Applied Mathematics and Computation, 350 (2019), 170-180.  doi: 10.1016/j.amc.2019.01.004.
    [3] T. BenincasaA. Favini and C. Moroşanu, A product formula approach to a non-homogeneous boundary optimal control problem governed by nonlinear phase-field transition system. Part Ⅰ: A phase-field model, Journal of Optimization Theory and Applications, 148 (2011), 14-30.  doi: 10.1007/s10957-010-9742-x.
    [4] J. L. BoldriniB. M. C. Caretta and E. Fernández-Cara, Analysis of a two-phase field model for the solidification of an alloy, J. Math. Anal. Appl., 357 (2009), 25-44.  doi: 10.1016/j.jmaa.2009.03.063.
    [5] L. Calatroni and P. Colli, Global solution to the Allen-Cahn equation with singular potentials and dynamic boundary conditions, Nonlinear Analysis. TMA, 79 (2013), 12-27.  doi: 10.1016/j.na.2012.11.010.
    [6] O. CârjǎA. Miranville and C. Moroşanu, On the existence, uniqueness and regularity of solutions to the phase-field system with a general regular potential and a general class of nonlinear and non-homogeneous boundary conditions, Nonlinear Analysis. TMA, 113 (2015), 190-208.  doi: 10.1016/j.na.2014.10.003.
    [7] S. Carl, V. K. Le and D. Motreanu, Nonsmooth Variational Problems and their Inequalities. Comparison Principles and Applications, Springer Monographs in Mathematics, Springer Science+Business Media, LLC: New York, 2007. doi: 10.1007/978-0-387-46252-3.
    [8] C. CavaterraC. G. GalM. Grasselli and A. Miranville, Phase-field systems with nonlinear coupling and dynamic boundary conditions, Nonlinear Analysis. TMA, 72 (2010), 2375-2399.  doi: 10.1016/j.na.2009.11.002.
    [9] M. M. Choban and C. N. Moroşanu, Well-posedness of a nonlinear second-order anisotropic reaction-diffusion problem with nonlinear and inhomogeneous dynamic boundary conditions, Carpathian J. Math., 38 (2022), 95-116.  doi: 10.37193/CJM.2022.01.08.
    [10] M. ContiS. Gatti and A. Miranville, Asymptotic behavior of the Caginalp phase-field system with coupled dynamic boundary conditions, Discrete Continuous Dynamical Systems - Series S, 5 (2012), 485-505.  doi: 10.3934/dcdss.2012.5.485.
    [11] A. CroitoruC. Moroşanu and G. Tǎnase, Well-posedness and numerical simulations of an anisotropic reaction-diffusion model in case 2D, Journal of Applied Analysis and Computation (JAAC), 11 (2021), 2258-2278.  doi: 10.11948/20200359.
    [12] I. Fonseca and  W. GangboDegree Theory in Analysis and Applications, Oxford, Clarendon, 1995. 
    [13] S. Gatti and A. Miranville, Asymptotic behavior of a phase-field system with dynamic boundary conditions, Differential Equations: Inverse and Direct Problems, Lecture Notes Pure Applied Mathematics, Chapman & Hall/CRC, Boca Raton, FL, 251 (2006), 149-170. 
    [14] O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Uralceva, Linear and Quasi-Linear Equations of Parabolic Type, Vol. 23, Translations of Mathematical Monographs, American Mathematical Society, 1968.
    [15] A. Miranville and C. Moroşanu, On the existence, uniqueness and regularity of solutions to the phase-field transition system with non-homogeneous Cauchy-Neumann and nonlinear dynamic boundary conditions, Applied Mathematical Modelling, 40 (2016), 192-207.  doi: 10.1016/j.apm.2015.04.039.
    [16] A. Miranville and C. Moroşanu, Analysis of an iterative scheme of fractional steps type associated to the nonlinear phase-field equation with non-homogeneous dynamic boundary conditions, Discrete and Continuous Dynamical Systems - Series S, 9 (2016), 537-556.  doi: 10.3934/dcdss.2016011.
    [17] A. Miranville and C. Moroşanu, Qualitative and quantitative analysis for the mathematical models of phase separation and transition. Aplications, AIMS - American Institute of Mathematical Sciences, Differential Equations & Dynamical Systems, 7 (2020). www.aimsciences.org/fileAIMS/cms/news/info/28df2b3d-ffac-4598-a89b-9494392d1394.pdf
    [18] A. Miranville and C. Moroşanu, A qualitative analysis of a nonlinear second-order anisotropic diffusion problem with non-homogeneous Cauchy-Stefan-Boltzmann boundary conditions, Appl. Math. Optim., 84 (2021), 227-244.  doi: 10.1007/s00245-019-09643-5.
    [19] C. Moroşanu, Analysis and Optimal Control of Phase-Field Transition System: Fractional Steps Methods, Bentham Science Publishers, 2012. doi: 10.2174/97816080535061120101.
    [20] C. Moroşanu, Well-posedness for a phase-field transition system endowed with a polynomial nonlinearity and a general class of nonlinear dynamic boundary conditions, Journal of Fixed Point Theory and Applications, 18 (2016), 225-250.  doi: 10.1007/s11784-015-0274-8.
    [21] C. Moroşanu, Modeling of the continuous casting process of steel via phase-field transition system. Fractional steps method, AIMS Mathematics, 4 (2019), 648-662.  doi: 10.3934/math.2019.3.648.
    [22] C. Moroşanu, Stability and errors analysis of two iterative schemes of fractional steps type associated to a nonlinear reaction-diffusion equation, Discrete and Continuous Dynamical Systems - Series S, 13 (2020), 1567-1587.  doi: 10.3934/dcdss.2020089.
    [23] C. Moroşanu and A. Croitoru, Analysis of an iterative scheme of fractional steps type associated to the phase-field equation endowed with a general nonlinearity and Cauchy-Neumann boundary conditions, Journal of Mathematical Analysis and Applications, 425 (2015), 1225-1239.  doi: 10.1016/j.jmaa.2015.01.033.
    [24] C. Moroşanu and D. Motreanu, The phase field system with a general nonlinearity, International Journal of Differential Equations and Applications, 1 (2000), 187-204. 
    [25] C. Moroşanu and S. Pavǎl, On the numerical approximation of a nonlinear reaction-diffusion equation with non-homogeneous Neumann boundary conditions. Case 1D, ROMAI J., 15 (2019), 43-60. https://rj.romai.ro/arhiva/2019/2/Morosanu-Paval.pdf
    [26] C. Moroşanu and S. Pavǎl, Rigorous mathematical investigation of a nonlocal and nonlinear second-order anisotropic reaction-diffusion model: Applications on image segmentation, Mathematics, 9 (2021), 91.  doi: 10.3390/math9010091.
    [27] C. MoroşanuS. Pavǎl and C. Trenchea, Analysis of stability and errors of three methods associated to the nonlinear reaction-diffusion equation supplied with homogeneous Neumann boundary conditions, Journal of Applied Analysis and Computation, 7 (2017), 1-19.  doi: 10.11948/2017001.
    [28] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, (2nd Edn), Applied Mathematical Sciences, Springer. New York, 1997. doi: 10.1007/978-1-4612-0645-3.
    [29] C. L. D. Vaz and J. L. Boldrini, A mathematical analysis of a nonisothermal Allen-Cahn type system, Mathematical Methods in the Applied Sciences, 35 (2012), 1392-1405.  doi: 10.1002/mma.2504.
  • 加载中
SHARE

Article Metrics

HTML views(1415) PDF downloads(99) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return