\`x^2+y_1+z_12^34\`
Article Contents
Article Contents

Global solvability of a model for grain boundary motion with constraint

Abstract / Introduction Related Papers Cited by
  • We consider a model for grain boundary motion with constraint. In composite material science it is very important to investigate the grain boundary formation and its dynamics. In this paper we study a phase-filed model of grain boundaries, which is a modified version of the one proposed by R. Kobayashi, J.A. Warren and W.C. Carter [18]. The model is described as a system of a nonlinear parabolic partial differential equation and a nonlinear parabolic variational inequality. The main objective of this paper is to show the global existence of a solution for our model, employing some subdifferential techniques in the convex analysis.
    Mathematics Subject Classification: Primary: 35K45, 35K55; Secondary: 35R35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    F. Andreu, C. Ballester, V. Caselles and J. M. Mazón, The Dirichlet problem for the total variation flow, J. Funct. Anal., 180 (2001), 347-403.doi: 10.1006/jfan.2000.3698.

    [2]

    F. Andreu, V. Caselles and J. M. Mazón, A strongly degenerate quasilinear equation: The parabolic case, Arch. Ration. Mech. Anal., 176 (2005), 415-453.doi: 10.1007/s00205-005-0358-5.

    [3]

    H. Attouch, "Variational Convergence for Functions and Operators," Pitman Advanced Publishing Program, Boston-London-Melbourne, 1984.

    [4]

    V. Barbu, "Nonlinear Semigroups and Differential Equations in Banach Spaces," Editura Academiei Republicii Socialiste Romania, Bucharest, Noordhoff International Publishing, Leiden, 1976.

    [5]

    G. Bellettini, V. Caselles and M. Novaga, The total variation flow in RN J. Differential Equations, 184 (2002), 475-525.doi: 10.1006/jdeq.2001.4150.

    [6]

    H. Brézis, "Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert," North-Holland, Amsterdam, 1973.

    [7]

    J. W. Cahn, P. Fife and O. Penrose, A phase-field model for diffusion-induced grain-boundary motion, Acta Mater., 45 (1997), 4397-4413.doi: 10.1016/S1359-6454(97)00074-8.

    [8]

    L. Q. Chen, Phase-field models for microstructure evolution, Annu. Rev. Mater Res., 32 (2002), 113-140.doi: 10.1146/annurev.matsci.32.112001.132041.

    [9]

    K. Deckelnick and C. M. Elliott, An existence and uniqueness result for a phase-field model of diffusion-induced grain-boundary motion, Proc. Roy. Soc. Edinburgh Sect. A, 131 (2001), 1323-1344.doi: 10.1017/S0308210500001414.

    [10]

    M.-H. Giga, Y. Giga and R. Kobayashi, Very singular diffusion equations, Proc. Taniguchi Conf. on Math., Advanced Studies in Pure Math., 31 (2001), 93-125.

    [11]

    M. E. Gurtin and M. T. Lusk, Sharp interface and phase-field theories of recrystallization in the plane, Phys. D, 130 (1999), 133-154.doi: 10.1016/S0167-2789(98)00323-6.

    [12]

    A. Ito, M. Gokieli, M. Niezgódka and M. SzpindlerMathematical analysis of approximate system for one-dimensional grain boundary motion of Kobayashi-Warren-Carter type, submitted.

    [13]

    A. Ito, N. Kenmochi and N. Yamazaki, A phase-field model of grain boundary motion, Appl. Math., 53 (2008), 433-454.doi: 10.1007/s10492-008-0035-8.

    [14]

    A. Ito, N. Kenmochi and N. Yamazaki, Weak solutions of grain boundary motion model with singularity, Rend. Mat. Appl. (7), 29 (2009), 51-63.

    [15]

    N. Kenmochi, Solvability of nonlinear evolution equations with time-dependent constraints and applications, Bull. Fac. Education, Chiba Univ., 30 (1981), 1-87.

    [16]

    N. Kenmochi, Monotonicity and compactness methods for nonlinear variational inequalities, in "Handbook of Differential Equations, Stationary Partial Differential Equations," (ed. M. Chipot), Vol. 4, North Holland, Amsterdam, (2007), 203-298.

    [17]

    R. Kobayashi and Y. Giga, Equations with singular diffusivity, J. Statist. Phys., 95 (1999), 1187-1220.doi: 10.1023/A:1004570921372.

    [18]

    R. Kobayashi, J. A. Warren and W. C. Carter, A continuum model of grain boundaries, Phys. D, 140 (2000), 141-150.doi: 10.1016/S0167-2789(00)00023-3.

    [19]

    R. Kobayashi, J. A. Warren and W. C. Carter, Grain boundary model and singular diffusivity, in "Free boundary problems: Theory and applications, II (Chiba, 1999)," 283-294, GAKUTO Internat. Ser. Math. Sci. Appl., 14, Gakko-tosho, Tokyo, 2000.

    [20]

    A. E. Lobkovsky and J. A. Warren, Phase field model of premelting of grain boundaries, Phys. D, 164 (2002), 202-212.

    [21]

    M. T. Lusk, A phase field paradigm for grain growth and recrystallization, Proc. R. Soc. London A, 455 (1999), 677-700.

    [22]

    M. Ôtani, Nonmonotone perturbations for nonlinear parabolic equations associated with subdifferential operators, Cauchy problems, J. Differential Equations, 46 (1982), 268-299.

    [23]

    A. Visintin, "Models of Phase Transitions," Progress in Nonlinear Differential Equations and their Applications, Vol. 28, Birkhäser, Boston, 1996.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(93) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return