\`x^2+y_1+z_12^34\`
Article Contents
Article Contents

A new over-penalized weak Galerkin method. Part Ⅲ: Convection-diffusion-reaction problems

  • * Corresponding author: Lunji Song

    * Corresponding author: Lunji Song 
Abstract / Introduction Full Text(HTML) Figure(2) / Table(3) Related Papers Cited by
  • In this paper, we propose an over-penalized weak Galerkin (OPWG) finite element method for stationary convection-diffusion-reaction equations with full variable coefficients. This method employs piecewise polynomial approximations of degree $ k $ ($ k\geq 1 $) for both the scalar function and its trace. Especially, the trace on inter-element boundaries is approximated by double-valued functions instead of single-valued ones. The $ (\mathbb{P}_{k}, \mathbb{P}_{k},[\mathbb{P}_{k-1}]^{d}) $ elements, with dimensions of space $ d = 2,\; 3 $ are employed. Our method deals with the convective term discretized in a trilinear form, and the uniqueness of numerical solutions is discussed. Optimal error estimates in the discrete $ H^1 $-norm and $ L^2 $-norm are established, from which the optimal penalty exponent can be fixed. Numerical examples confirm the theory.

    Mathematics Subject Classification: Primary: 65N15, 65N30; Secondary: 35J50.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The initial meshes: (a) unit square; (b) L-shaped domain

    Figure 2.  Example 3. The plot of WG solution (Left) for $k = 2, \beta_0 = 5$ and $h = 1/128$ and the exact solution (Right)

    Table 1.  Example 1. Numerical errors and convergence rates

    $ k=1 $ $ h $ $ |||e_h||| $ rates $ ||e_0|| $ rates
    $ \beta_0=2 $ 1/4 1.3064e-01 7.0262e-01
    1/8 9.1251e-02 0.5176 3.3170e-01 1.0828
    1/16 6.4970e-02 0.4900 1.6448e-01 1.0119
    1/32 4.6338e-02 0.4875 8.2620e-02 0.9933
    1/64 3.2963e-02 0.4913 4.1529e-02 0.9923
    1/128 2.3390e-02 0.4949 2.0838e-02 0.9949
    $ \beta_0=3 $ 1/4 1.0541e-01 4.5887e-01
    1/8 5.5024e-02 0.9378 1.2313e-01 1.8979
    1/16 2.8019e-02 0.9736 3.1732e-02 1.9561
    1/32 1.4121e-02 0.9885 8.0389e-03 1.9808
    1/64 7.0857e-03 0.9948 2.0220e-03 1.9912
    1/128 3.5489e-03 0.9975 5.0698e-04 1.9957
    $ k=2 $ $ h $ $ |||e_h||| $ rates $ ||e_0|| $ rates
    $ \beta_0=4 $ 1/4 3.8617e-02 6.4250e-02
    1/8 1.4377e-02 1.4254 8.5362e-03 2.9120
    1/16 5.1701e-03 1.4754 1.0891e-03 2.9704
    1/32 1.8422e-03 1.4887 1.3752e-04 2.9854
    1/64 6.5388e-04 1.4943 1.7279e-05 2.9925
    1/128 2.3164e-04 1.4971 2.0897e-06 3.0476
    $ \beta_0=5 $ 1/4 2.4510e-02 3.3695e-02
    1/8 6.3590e-03 1.9464 3.4220e-03 3.2996
    1/16 1.6140e-03 1.9781 3.9543e-04 3.1133
    1/32 4.0656e-04 1.9891 4.8273e-05 3.0341
    1/64 1.0203e-04 1.9944 6.0361e-06 2.9995
    1/128 2.7533e-05 1.8897 2.3620e-05 -1.9683
     | Show Table
    DownLoad: CSV

    Table 2.  Example 2. L-shaped domain

    $ h $ $ |||e_h||| $ rates $ ||e_0|| $ rates
    $ k=1 $
    $ \beta_0=3 $
    1/4 1.1333e+01 3.7667e+00
    1/8 6.1262e+00 0.8874 1.0837e+00 1.7973
    1/16 3.1637e+00 0.9533 2.8710e-01 1.9163
    1/32 1.6016e+00 0.9820 7.3398e-02 1.9677
    1/64 8.0463e-01 0.9931 1.8508e-02 1.9875
    1/128 4.0310e-01 0.9971 4.6435e-03 1.9948
    $ k=2 $
    $ \beta_0=5 $
    1/4 5.4298e+00 9.7421e-01
    1/8 1.5931e+00 1.7973 1.0745e-01 3.1805
    1/16 4.0802e-01 1.9163 1.2024e-02 3.1596
    1/32 1.0273e-01 1.9677 1.4513e-03 3.0504
    1/64 2.5764e-02 1.9875 1.7971e-04 3.0136
    1/128 6.4507e-03 1.9948 2.2406e-05 3.0037
     | Show Table
    DownLoad: CSV

    Table 3.  Example 3. Interior layer

    $ h $ $ |||e_h||| $ rates $ ||e_0|| $ rates
    $ k=1 $
    $ \beta_0=3 $
    1/4 1.9364e-02 1.3731e-01
    1/8 1.0828e-02 0.8386 7.2267e-02 0.9260
    1/16 5.3065e-03 1.0289 1.3719e-02 2.3971
    1/32 2.3762e-03 1.1591 2.5532e-03 2.4257
    1/64 1.1754e-03 1.0155 6.3756e-04 2.0016
    $ k=2 $
    $ \beta_0=5 $
    1/4 1.0119e-02 7.7888e-02
    1/8 2.8314e-03 1.8374 9.7203e-03 3.0023
    1/16 7.6948e-04 1.8795 9.5727e-04 3.3440
    1/32 2.5220e-04 1.6093 1.2603e-04 2.9251
    1/64 6.6223e-05 1.9291 1.7346e-05 2.8610
     | Show Table
    DownLoad: CSV
  • [1] D. N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM Journal on Numerical Analysis, 19 (1982), 742-760.  doi: 10.1137/0719052.
    [2] A. Çeşmelioğlu and B. Rivière, Primal discontinuous Galerkin methods for time-dependent coupled surface and subsurface flow, Journal of Scientific Computing, 40 (2009), 115-140.  doi: 10.1007/s10915-009-9274-4.
    [3] B. Chabaud and B. Cockburn, Uniform-in-time superconvergence of HDG methods for the heat equation, Mathematics of Computation, 81 (2012), 107-129.  doi: 10.1090/S0025-5718-2011-02525-1.
    [4] G. ChenM. Feng and X. Xie, A robust WG finite element method for convection-diffusion-reaction equations, Journal of Computational and Applied Mathematics, 315 (2017), 107-125.  doi: 10.1016/j.cam.2016.10.029.
    [5] Y. ChenG. Chen and X. Xie, Weak Galerkin finite element method for Biot's consolidation problem, Journal of Computational and Applied Mathematics, 330 (2018), 398-416.  doi: 10.1016/j.cam.2017.09.019.
    [6] B. Cockburn and C. Dawson, Some extensions of the local discontinuous Galerkin method for convection-diffusion equations in multidimensions, The Mathematics of Finite Elements and Applications, X, MAFELAP 1999 (Uxbridge), Elsevier Science Ltd., Oxford, 2000,225-238. doi: 10.1016/B978-008043568-8/50014-6.
    [7] B. CockburnJ. Gopalakrishnan and R. Lazarov, Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, SIAM Journal on Numerical Analysis, 47 (2009), 1319-1365.  doi: 10.1137/070706616.
    [8] B. Cockburn and C.-W. Shu, The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM Journal on Numerical Analysis, 35 (1998), 2440-2463.  doi: 10.1137/S0036142997316712.
    [9] G. FuW. Qiu and W. Zhang, An analysis of HDG methods for convection-dominated diffusion problems, ESAIM Math. Model. Numer. Anal., 49 (2015), 225-256.  doi: 10.1051/m2an/2014032.
    [10] F. Gao and L. Mu, On $L^2$ error estimate for weak Galerkin finite element methods for parabolic problems, Journal of Computational Mathematics, 32 (2014), 195-204.  doi: 10.4208/jcm.1401-m4385.
    [11] X. HuL. Mu and X. Ye, Weak Galerkin method for the Biot's consolidation model, Computers & Mathematics with Applications, 75 (2018), 2017-2030.  doi: 10.1016/j.camwa.2017.07.013.
    [12] G. LiY. Chen and Y. Huang, A new weak Galerkin finite element scheme for general second-order elliptic problems, Journal of Computational and Applied Mathematics, 344 (2018), 701-715.  doi: 10.1016/j.cam.2018.05.021.
    [13] J. LiX. Ye and S. Zhang, A weak Galerkin least-squares finite element method for div-curl systems, Journal of Computational Physics, 363 (2018), 79-86.  doi: 10.1016/j.jcp.2018.02.036.
    [14] Q. H. Li and J. Wang, Weak Galerkin finite element methods for parabolic equations, Numerical Methods for Partial Differential Equations, 29 (2013), 2004-2024.  doi: 10.1002/num.21786.
    [15] R. LinX. YeS. Zhang and P. Zhu, A Weak Galerkin Finite Element Method for Singularly Perturbed Convection-Diffusion-Reaction Problems, SIAM Journal on Numerical Analysis, 56 (2018), 1482-1497.  doi: 10.1137/17M1152528.
    [16] J. Liu, S. Tavener and Z. Wang, Lowest-order weak Galerkin finite element method for Darcy flow on convex polygonal meshes, SIAM Journal on Scientific Computing, 40 (2018), B1229-B1252. doi: 10.1137/17M1145677.
    [17] K. LiuL. Song and S. Zhao, A new over-penalized weak Galerkin method. Part Ⅰ: Second-order elliptic problems, Discrete & Continuous Dynamical Systems - B, 26 (2021), 2411-2428.  doi: 10.3934/dcdsb.2020184.
    [18] K. LiuL. Song and S. Zhou, An over-penalized weak Galerkin method for second-order elliptic problems, Journal of Computational Mathematics, 36 (2018), 866-880.  doi: 10.4208/jcm.1705-m2016-0744.
    [19] L. MuJ. WangG. WeiX. Ye and S. Zhao, Weak Galerkin methods for second order elliptic interface problems, Journal of Computational Physics, 250 (2013), 106-125.  doi: 10.1016/j.jcp.2013.04.042.
    [20] L. MuJ. Wang and X. Ye, A stable numerical algorithm for the Brinkman equations by weak Galerkin finite element methods, Journal of Computational Physics, 273 (2014), 327-342.  doi: 10.1016/j.jcp.2014.04.017.
    [21] L. MuJ. Wang and X. Ye, Weak Galerkin finite element methods for the biharmonic equation on polytopal meshes, Numerical Methods for Partial Differential Equations, 30 (2014), 1003-1029.  doi: 10.1002/num.21855.
    [22] L. MuJ. Wang and X. Ye, A weak Galerkin finite element method with polynomial reduction, Journal of Computational and Applied Mathematics, 285 (2015), 45-58.  doi: 10.1016/j.cam.2015.02.001.
    [23] L. MuJ. Wang and X. Ye, Effective implementation of the weak Galerkin finite element methods for the biharmonic equation, Computers & Mathematics with Applications, 74 (2017), 1215-1222.  doi: 10.1016/j.camwa.2017.06.002.
    [24] L. MuJ. WangX. Ye and S. Zhang, A weak Galerkin finite element method for the Maxwell equations, Journal of Scientific Computing, 65 (2015), 363-386.  doi: 10.1007/s10915-014-9964-4.
    [25] L. MuJ. WangX. Ye and S. Zhang, A discrete divergence free weak Galerkin finite element method for the Stokes equations, Applied Numerical Mathematics, 125 (2018), 172-182.  doi: 10.1016/j.apnum.2017.11.006.
    [26] L. MuJ. WangX. Ye and S. Zhao, A new weak Galerkin finite element method for elliptic interface problems, Journal of Computational Physics, 325 (2016), 157-173.  doi: 10.1016/j.jcp.2016.08.024.
    [27] B. RivièreM. F. Wheeler and V. Girault, Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. Part Ⅰ, Computational Geosciences, 3 (1999), 337-360.  doi: 10.1023/A:1011591328604.
    [28] L. SongW. QiK. Liu and Q. Gu, A new over-penalized weak Galerkin finite element method. Part Ⅱ: Elliptic interface problems, Discrete & Continuous Dynamical Systems - B, 26 (2021), 2581-2598.  doi: 10.3934/dcdsb.2020196.
    [29] L. Song and C. Yang, Convergence of a second-order linearized BDF-IPDG for nonlinear parabolic equations with discontinuous coefficients, Journal of Scientific Computing, 70 (2017), 662-685.  doi: 10.1007/s10915-016-0261-2.
    [30] L. SongS. Zhao and K. Liu, A relaxed weak Galerkin method for elliptic interface problems with low regularity, Applied Numerical Mathematics, 128 (2018), 65-80.  doi: 10.1016/j.apnum.2018.01.021.
    [31] T. TianQ. Zhai and R. Zhang, A new modified weak Galerkin finite element scheme for solving the stationary Stokes equations, Journal of Computational and Applied Mathematics, 329 (2018), 268-279.  doi: 10.1016/j.cam.2017.01.021.
    [32] C. Wang, New discretization schemes for time-harmonic Maxwell equations by weak Galerkin finite element methods, Journal of Computational and Applied Mathematics, 341 (2018), 127-143.  doi: 10.1016/j.cam.2018.04.015.
    [33] C. Wang and J. Wang, Discretization of div-curl systems by weak Galerkin finite element methods on polyhedral partitions, Journal of Scientific Computing, 68 (2016), 1144-1171.  doi: 10.1007/s10915-016-0176-y.
    [34] J. Wang and X. Ye, A weak Galerkin mixed finite element method for second order elliptic problems, Mathematics of Computation, 83 (2014), 2101-2126.  doi: 10.1090/S0025-5718-2014-02852-4.
    [35] J. Wang and X. Ye, A weak Galerkin finite element method for the Stokes equations, Advances in Computational Mathematics, 42 (2016), 155-174.  doi: 10.1007/s10444-015-9415-2.
    [36] X. WangQ. ZhaiR. Wang and R. Jari, An absolutely stable weak Galerkin finite element method for the Darcy-Stokes problem, Applied Mathematics and Computation, 331 (2018), 20-32.  doi: 10.1016/j.amc.2018.02.034.
    [37] J. WangQ. ZhaiR. Zhang and S. Zhang, A weak Galerkin finite element scheme for the Cahn-Hilliard equation, Mathematics of Computation, 88 (2019), 211-235.  doi: 10.1090/mcom/3369.
    [38] X. WangQ. Zhai and R. Zhang, The weak Galerkin method for solving the incompressible Brinkman flow, Journal of Computational and Applied Mathematics, 307 (2016), 13-24.  doi: 10.1016/j.cam.2016.04.031.
    [39] X. Ye and S. Zhang, A conforming discontinuous Galerkin finite element method, International Journal of Numerical Analysis and Modeling, 17 (2020), 110-117. 
    [40] X. Ye and S. Zhang, A Conforming Discontinuous Galerkin Finite Element Method: Part Ⅱ, International Journal of Numerical Analysis and Modeling, 17 (2020), 281-296. 
    [41] Q. ZhaiR. Zhang and L. Mu, A new weak Galerkin finite element scheme for the Brinkman model, Communications in Computational Physics, 19 (2016), 1409-1434.  doi: 10.4208/cicp.scpde14.44s.
    [42] R. Zhang and Q. Zhai, A weak Galerkin finite element scheme for the biharmonic equations by using polynomials of reduced order, Journal of Scientific Computing, 64 (2015), 559-585.  doi: 10.1007/s10915-014-9945-7.
    [43] T. Zhang and Y. Chen, An analysis of the weak Galerkin finite element method for convection-diffusion equations, Applied Mathematics and Computation, 346 (2019), 612-621.  doi: 10.1016/j.amc.2018.10.064.
    [44] X. ZhengG. Chen and X. Xie, A divergence-free weak Galerkin method for quasi-Newtonian Stokes flows, Science China Mathematics, 60 (2017), 1515-1528.  doi: 10.1007/s11425-016-0354-8.
    [45] X. Zheng and X. Xie, A posteriori error estimator for a weak Galerkin finite element solution of the Stokes problem, East Asian Journal on Applied Mathematics, 7 (2017), 508-529.  doi: 10.4208/eajam.221216.250417a.
  • 加载中

Figures(2)

Tables(3)

SHARE

Article Metrics

HTML views(1543) PDF downloads(277) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return