\`x^2+y_1+z_12^34\`
Article Contents
Article Contents

A stochastic HIV/HTLV-I co-infection model incorporating the AIDS-related cancer cells

  • *Corresponding author: Weipeng Zhang

    *Corresponding author: Weipeng Zhang

The second author is supported by the National Natural Science Foundation of PR China (No.11971096), the National Key R & D Program of PR China (2020YFA0714102), the Natural Science Foundation of Jilin Province(No.YDZJ202101ZYTS154), and the Fundamental Research Funds for the Central Universities

Abstract / Introduction Full Text(HTML) Figure(6) / Table(2) Related Papers Cited by
  • This paper proposes a stochastic HIV/HTLV-I co-infection model incorporating the AIDS-related cancer cells and investigates its dynamical behaviours. The main methods are stochastic Lyapunov analysis and the ergodic theory. The existence and uniqueness of the global positive solution is proved as well as the stochastic ultimate boundedness. A unique stationary distribution is yielded. Furthermore, the sufficient conditions for the extinction of diseases are given. Finally, some numerical simulations are carried out to support the theoretical results.

    Mathematics Subject Classification: Primary: 60H10, 65C20.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The action mechanism of model (3)

    Figure 2.  Time evolution of $ C(t) $, $ H(t) $, $ I_{1}(t) $ and $ I_{2}(t) $ obtained from numerical simulation for the deterministic model (2)

    Figure 3.  Ergodicity stationary distribution of model (3) with $ \sigma_{1} = 0.015 $, $ \sigma_{2} = 0.015 $, $ \sigma_{3} = 0.015 $ and $ \sigma_{4} = 0.015 $

    Figure 4.  The sample path of $ C(t) $, $ \langle\langle C\rangle\rangle_t $, $ H(t) $, $ \langle\langle H\rangle\rangle_t $, $ I_{1}(t) $ and $ I_{2}(t) $ with $ \sigma_{1} = 0.025 $, $ \sigma_{2} = 0.02 $, $ \sigma_{3} = 0.2 $ and $ \sigma_{4} = 0.45 $, respectively

    Figure 5.  The sample path of $ C(t) $, $ \langle\langle C\rangle\rangle_t $, $ H(t) $, $ \langle\langle H\rangle\rangle_t $, $ I_{1}(t) $ and $ I_{2}(t) $ with $ \sigma_{1} = \sqrt{0.2} $, $ \sigma_{2} = 0.02 $, $ \sigma_{3} = 0.3 $ and $ \sigma_{4} = 0.5 $, respectively

    Figure 6.  The sample path of $ C(t) $, $ H(t) $, $ \langle\langle H\rangle\rangle_t $, $ I_{1}(t) $ and $ I_{2}(t) $ with $ \sigma_{1} = 0.5 $, $ \sigma_{2} = 0.02 $, $ \sigma_{3} = 0.2 $ and $ \sigma_{4} = 0.45 $, respectively. The distribution of $ H(t) $

    Table 1.  The significance of parameters in model (2)

    Parameter Significance
    $ r_{1} $ the intrinsic growth rate of cancer cells
    $ r_{2} $ the intrinsic growth rate of healthy CD4+ T cells
    $ e_{1} $ the killing rate of healthy CD4+ T cells
    $ e_{2} $ the losing rate of healthy CD4+ T cells
    $ k $ the HIV infection rate
    $ q $ the HTLV-I infection rate
    $ \frac{1}{h_{1}} $ the maximum carrying capacity of cancer cells
    $ \frac{1}{h_{2}} $ the maximum carrying capacity of healthy CD4+ T cells
    $ \mu_{1} $ the death rates of HIV-infected CD4+ T cells
    $ \mu_{2} $ the death rates of HTLV-infected CD4+ T cells
    $ \alpha_{1} $, $ \alpha_{2} $, $ \beta_{1} $, $ \beta_{2} $ positive constants
     | Show Table
    DownLoad: CSV

    Table 2.  The parameters and their values in model (3)

    Parameter Value Source
    $ r_{1} $ $ 10^{-1} $ [47]
    $ r_{2} $ $ 3\times 10^{-2} $ [44]
    $ e1 $ $ 10^{-5} $ [44]
    $ e2 $ $ 10^{-6} $ [44,47]
    $ k $ $ 10^{-4} $ [53]
    $ \alpha_{1} $ $ 5\times 10^{-3} $ Estimated
    $ \beta_{1} $ $ 5\times10^{-2} $ Estimated
    $ h_{1} $ $ \frac{1}{700} $ Estimated
    $ h_{2} $ $ 1.25\times 10^{-3} $ Estimated
    $ \mu_{1} $ $ 0.0015 $ Estimated
    $ q $ $ 10^{-4} $ Estimated
    $ \alpha_{2} $ $ 10^{-3} $ Estimated
    $ \beta_{2} $ $ 10^{-2} $ [24]
    $ \mu_{2} $ $ 2\times 10^{-2} $ [59]
     | Show Table
    DownLoad: CSV
  • [1] N. H. Alshamrani, Stability of an HTLV-HIV coinfection model with multiple delays and CTL-mediated immunity, Adv. Difference Equ., 2021 (2021), 1-57.  doi: 10.1186/s13662-021-03416-7.
    [2] J. Bao and J. Shao, Permanence and extinction of regime-switching predator-prey models, SIAM J. Math. Appl., 48 (2016), 725-739.  doi: 10.1137/15M1024512.
    [3] D. S. Callaway and A. S. Perelson, HIV-1 infection and low steady state viral loads, Bull. Math. Biol., 64 (2002), 29-64. 
    [4] C. CasoliE. Pilotti and U. Bertazzoni, Molecular and cellular interactions of HIV-1/HTLV coinfection and impact on AIDS progression, AIDS Rev., 9 (2007), 140-149. 
    [5] Y. Chang, E. Cesarman, M. S. Pessin and et al., Identification of herpesvirus-like DNA sequences in AIDS-associated kaposi's sarcoma, Science, 266 (1994), 1865-1869.
    [6] J. P. ChávezB. Gürbüz and C. M. A. Pinto, The effect of aggressive chemotherapy in a model for HIV/AIDS-cancer dynamics, Commun. Nonlinear Sci. Numer. Simul., 75 (2019), 109-120.  doi: 10.1016/j.cnsns.2019.03.021.
    [7] M. P. Cranage, A. M. Whatmore, S. A. Sharpe and et al., Macaques infected with live attenuated SIVmac are protected against superinfection via the rectal mucosa, Virology, 229 (1997), 143-154.
    [8] R. V. Culshaw and S. G. Ruan, A delay-differential equation model of HIV infection of CD4+ T-cells, Math. Biosci., 165 (2000), 27-39. 
    [9] M. L. Diegel, P. A. Moran, L. K. Gilliland and et al., Regulation of HIV production by blood mononuclear cells from HIV-infected donors: Ⅱ. HIV-1 production depends on T cellmonocyte interaction, AIDS Res. Hum. Retrov., 9 (1993), 465-473.
    [10] N. T. Dieu, D. H. Nguyen, N. H. Du and et al., Classification of asymptotic behavior in a stochastic SIR model, SIAM J. Appl. Dyn. Syst., 15 (2016), 1062-1084. doi: 10.1137/15M1043315.
    [11] J. Duarte, C. Januário, N. Martins and et al., Optimal homotopy analysis of a chaotic HIV-1 model incorporating AIDS-related cancer cells, Numer. Algorithms, 77 (2018), 261-288. doi: 10.1007/s11075-017-0314-0.
    [12] A. M. Elaiw and N. H. AlShamrani, Modeling and analysis of a within-host HIV/HTLV-I co-infection, Bol. Soc. Mat. Mex., 27 (2021), Paper No.38, 51pp. doi: 10.1007/s40590-021-00330-6.
    [13] A. M. Elaiw and N. H. Alshamrani, Stability of HTLV/HIV dual infection model with mitosis and latency, Math. Biosci. Eng., 18 (2021), 1077-1120.  doi: 10.3934/mbe.2021059.
    [14] A. M. Elaiw, N. H. AlShamrani, K. Hattaf and et al., Global dynamics of HIV/HTLV-I coinfection with effective CTL-mediated immune response, Bull. Malays. Math. Sci. Soc., 44 (2021), 4003-4042. doi: 10.1007/s40840-021-01123-w.
    [15] A. M. ElaiwN. H. AlShamrani and A. D. Hobiny, Mathematical modeling of HIV/HTLV co-infection with CTL-mediated immunity, AIMS Math., 6 (2021), 1634-1676.  doi: 10.3934/math.2021098.
    [16] T. Feng, Z. Qiu, X. Meng and et al., Analysis of a stochastic HIV-1 infection model with degenerate diffusion, Appl. Math. Comput., 348 (2019), 437-455. doi: 10.1016/j.amc.2018.12.007.
    [17] V. E. V. Geddes, D. P. José, F. E. Leal and et al., HTLV-1 Tax activates HIV-1 transcription in latency models, Virology, 504 (2017), 45-51.
    [18] H. Gomez-Acevedo and M. Y. Li, Backward bifurcation in a model for HTLV-I infection of CD4+ T cells, Bull. Math. Biol., 67 (2005), 101-114.  doi: 10.1016/j.bulm.2004.06.004.
    [19] P. Gupta, R. Balachandran, M. Ho and et al., Cell-to-cell transmission of human immunodeficiency virus type 1 in the presence of azidothymidine and neutralizing antibody, J. Virol., 63 (1989), 2361-2365.
    [20] J. He and K. Wang, The survival analysis for a single-species population model in a polluted environment, Appl. Math. Model., 31 (2007), 2227-2238. 
    [21] D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 43 (2001), 525-546.  doi: 10.1137/S0036144500378302.
    [22] C. Isache, M. Sands, N. Guzman and et al., HTLV-1 and HIV-1 co-infection: A case report and review of the literature, IDCases, 4 (2016), 53-55.
    [23] C. Ji, The threshold for a stochastic HIV-1 infection model with Beddington-DeAngelis incidence rate, Appl. Math. Model., 64 (2018), 168-184.  doi: 10.1016/j.apm.2018.07.031.
    [24] X. J. Jia and R. Xu, Global dynamics of a delayed HTLV-I infection model with Beddington-DeAngelis incidence and immune impairment, Chaos Solitons Fractals., 155 (2022), 111733, 7pp. doi: 10.1016/j.chaos.2021.111733.
    [25] R. Khasminskii, Stochastic Stability of Differential Equations, 2$^{nd}$ edition, Springer, Heidelberg, 2012. doi: 10.1007/978-3-642-23280-0.
    [26] D. E. KirschnerS. Lenhart and S. Serbin, Optimal control of the chemotherapy of HIV, J. Math. Biol., 35 (1997), 775-792.  doi: 10.1007/s002850050076.
    [27] D. Klatzmann, F. Barre-Sinoussi, M. T. Nugeyre and et al., Selective tropism of lymphadenopathy associated virus (LAV) for helper-inducer T lymphocytes, Science, 225(4657) (1984), 59-63.
    [28] D. Klatzmann, E. Champagne, S. Chamaret and et al., T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV, Nature, 312(5996) (1984), 767-768.
    [29] D. P. KuangQ. Yin and J. L. Li, Dynamics of stochastic HTLV-I infection model with nonlinear CTL immune response, Math. Meth. Appl. Sci., 44 (2021), 14059-14078.  doi: 10.1002/mma.7674.
    [30] X. Y. Li and X. R. Mao, Population dynamical behavior of non-autonomous Lotka-Volterra competitive system with random perturbation, Discrete Contin. Dyn. Syst., 24 (2009), 523-545.  doi: 10.3934/dcds.2009.24.523.
    [31] X. Y. Li, G. T. Song, Y. Xia and et al., Dynamical behaviors of the tumor-immune system in a stochastic environment, SIAM J. Appl. Math., 79 (2019), 2193-2217. doi: 10.1137/19M1243580.
    [32] A. G. Lim and P. K. Maini, HTLV-I infection: A dynamic struggle between viral persistence and host immunity, J. Theor. Biol., 352 (2014), 92-108.  doi: 10.1016/j.jtbi.2014.02.022.
    [33] M. Liu and K. Wang, Survival analysis of stochastic single-species population models in polluted environments, Ecol. Model., 220 (2009), 1347-1357. 
    [34] M. LiuK. Wang and Q. Wu, Survival analysis of stochastic competitive models in a polluted environment and stochastic competitive exclusion principle, Bull. Math. Biol., 73 (2011), 1969-2012.  doi: 10.1007/s11538-010-9569-5.
    [35] Q. Liu and D. Q. Jiang, Stationary distribution of a stochastic staged progression HIV model with imperfect vaccination, Physica. A, 527 (2019), 121271, 14pp. doi: 10.1016/j.physa.2019.121271.
    [36] J. Lou, Z. Ma, J. Li and et al., The impact of the CD8+ cell non-cytotoxic antiviral response (CNAR) and cytotoxic T lymphocyte (CTL) activity in a cell-to-cell spread model for HIV-1 with a time delay, J. Biol. Syst., 12 (2004), 73-90.
    [37] J. Lou and T. Ruggeri, A time delay model about AIDS-related cancer: Equilibria, cycles and chaotic behavior, Ricerche Mat., 56 (2007), 195-208.  doi: 10.1007/s11587-007-0013-6.
    [38] J. LouT. Ruggeri and C. Tebaldi, Modeling cancer in HIV-1 infected individuals: Equilibria, cycles and chaotic behavior, Math. Biosci. Eng., 3 (2006), 313-324.  doi: 10.3934/mbe.2006.3.313.
    [39] T. H. Mulherkar, D. J. Gómez, G. Sandel and et al., Co-Infection and Cancer: Host-Pathogen Interaction between Dendritic Cells and HIV-1, HTLV-1, and Other Oncogenic Viruses, Viruses, 14 (2022), 2037.
    [40] X. R. Mao and  C. G. YuanStochastic Differential Equations with Markovian Switching, Imperial College Press, London, 2006.  doi: 10.1142/p473.
    [41] X. R. Mao, Stochastic Differential Equations and Applications, 2$^{nd}$ edition, Horwood Publishing, Chichester, 2008. doi: 10.1533/9780857099402.
    [42] P. A. Naik, K. M. Owolabi, M. Yavuz and et al., Chaotic dynamics of a fractional order HIV-1 model involving AIDS-related cancer cells, Chaos Solitons Fractals., 140 (2020), 110272, 13pp. doi: 10.1016/j.chaos.2020.110272.
    [43] R. Pearce-Pratt and D. M. Phillips, Studies of adhesion of lymphocytic cells: Implications for sexual transmission of human immunodeficiency virus, Biol. Reprod., 48 (1993), 431-435. 
    [44] A. S. PerelsonD. E. Kirschner and R. D. Boer, Dynamics of HIV infection of CD4+ T cells, Math. Biosci., 114 (1993), 81-125. 
    [45] A. S. Perelson and P. W. Nelson, Mathematical analysis of HIV-I dynamics in vivo, SIAM Rev., 41 (1999), 3-44.  doi: 10.1137/S0036144598335107.
    [46] E. Pilotti, M. V. Bianchi, A. De Maria and et al., HTLV-1/-2 and HIV-1 co-infections: Retroviral interference on host immune status, Front. Microbiol., 4 (2013), 1-13.
    [47] A. S. Qi and Y. Du, The Nonlinear Medels for Immunity, Shanghai Scientific and Technological Education Publishing House, Shanghai, 1998.
    [48] K. Qi and D. Q. Jiang, The impact of virus carriers screening and seeking treatment actively on dynamical behavior of a stochastic HIV/AIDS infection model, Appl. Math. Model., 85 (2020), 378-404.  doi: 10.1016/j.apm.2020.03.027.
    [49] K. Qi and D. Q. Jiang, Threshold behavior in a stochastic HTLV-I infection model with CTL immune response and regime switching, Math. Meth. Appl. Sci., 41 (2018), 6866-6882.  doi: 10.1002/mma.5198.
    [50] K. Qi, D. Q. Jiang, T. Hayat and et al., The Stationary distribution and extinction of a double thresholds HTLV-I infection model with nonlinear CTL immune response disturbed by white noise, Int. J. Biomath., 12 (2019), 1950058, 20 pp. doi: 10.1142/S179352451950058X.
    [51] R. D. Schrier, Mechanisms of immune activation of human immunodeficiency virus in monocytes/macrophages, J. Virol., 67 (1993), 5713-5720. 
    [52] X. Song and Y. Li, Global stability and periodic solution of a model for HTLV-1 infection and ATL progression, Appl. Math. Comput., 180 (2006), 401-410.  doi: 10.1016/j.amc.2005.12.022.
    [53] J. L. SpougeR. I. Shrager and D. S. Dimitrov, HIV-1 infection kinetics in tissue cultures, Math. Biosci., 138 (1996), 1-22. 
    [54] D. J. Straus, HIV-associated lymphomas, Curr. Oncol. Rep., 3 (2001), 260-265. 
    [55] S. Tokudome, O. Tokunaga, Y. Shimamoto and et al., Incidence of adult T cell leukemia/lymphoma among human T lymphotropic virus type 1 carriers in Saga, Japan, Cancer Res., 49 (1989), 226-228.
    [56] M. Tulius Silva, O. De Melo Esp´ındola, A. C. Bezerra Leite and et al., Neurological aspects of HIV/human T lymphotropic virus coinfection, AIDS Rev., 11 (2009), 71-78.
    [57] C. Vargas-De-Leon, The complete classification for global dynamics of a model for the persistence of HTLV-1 infection, Appl. Math. Comput., 237 (2014), 489-493.  doi: 10.1016/j.amc.2014.03.138.
    [58] WHO, Global Health Observatory (GHO) data, HIV/AIDS, 2022. Available from: http://www.who.int/gho/hiv/en/.
    [59] L. Wang, Z. Liu, Y. Li and et al., Complete dynamical analysis for a nonlinear HTLVI infection model with distributed delay, CTL response and immune impairment, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 917-933. doi: 10.3934/dcdsb.2019196.
    [60] N. Yamamoto, M. Okada, Y. Koyanagi and et al., Transformation of human leukocytes by cocultivation with an adult T cell leukemia virus producer cell line, Science, 217 (1982), 737-739.
  • 加载中

Figures(6)

Tables(2)

SHARE

Article Metrics

HTML views(2077) PDF downloads(347) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return