\`x^2+y_1+z_12^34\`
Article Contents
Article Contents

Non simple blow ups for the Nirenberg problem on half spheres

  • *Corresponding author: Mohameden Ahmedou

    *Corresponding author: Mohameden Ahmedou 

The first author is supported by [DFG grant AH 156/2-1]

Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • In this paper we study a Nirenberg type problem on standard half spheres $ (\mathbb{S}^n_+,g_0) $ consisting of finding conformal metrics of prescribed scalar curvature and zero boundary mean curvature. This problem amounts to solve the following boundary value problem involving the critical Sobolev exponent:

    $ \begin{equation*} (\mathcal{P}) \quad \begin{cases} - \Delta_{g_0} u \, + \, \frac{n(n-2)}{4} u \, = K \, u^{\frac{n+2}{n-2}},\, u > 0 \quad \mbox{in } \mathbb{S}^n_+, \\ \frac{\partial u}{\partial \nu }\, = \, 0 \quad \mbox{on } \partial \mathbb{S}^n_+, \end{cases} \end{equation*} $

    where $ K \in C^3(\mathbb{S}^n_+) $ is a positive function. We construct, under generic conditions on the function $ K $, finite energy solutions of a subcritical approximation of $ (\mathcal{P}) $ on half spheres of dimension $ n \geq 5 $, which exhibit multiple blow up of cluster-type at the same boundary point. These solutions may have zero or non zero weak limit and may develop clusters at different boundary points. Such a blow up phenomena on half spheres drastically contrast with the case of the Nirenberg problem on spheres, where non simple blow up for finite energy solutions cannot occur and unveils an unexpected connection with vortex type problems arising in Euler equations in fluid dynamic and mean fields type equations in mathematical physics. We construct also, under suitable conditions on the restriction of $ K $ on $ \partial \mathbb{S}^n_+ $, approximate solutions of arbitrarily large energy and Morse index.

    Mathematics Subject Classification: Primary: 35A15, 58J05; Secondary: 58E05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] M. Ahmedou and M. Ben Ayed, The Nirenberg problem on high dimensional half spheres: The effect of pinching conditions, Calc. Var. Partial Differential Equations, 60 (2021), Paper No. 148. arXiv: 2012.12973. doi: 10.1007/s00526-021-02013-6.
    [2] M. Ahmedou and M. Ben Ayed, The Nirenberg problem on high dimensional half spheres: A bubbling off analysis, to appear, International Mathematics Research Notices.
    [3] A. Bahri, Critical Points at Infinity in Some Variational Problems, Research Notes in Mathematics, 182, Longman-Pitman, London, 1989.
    [4] A. Bahri, An invariant for yamabe-type flows with applications to scalar curvature problems in high dimensions, A celebration of J. F. Nash Jr., Duke Math. J., 81 (1996), 323-466.  doi: 10.1215/S0012-7094-96-08116-8.
    [5] A. Bahri and H. Brézis, Non-linear Elliptic Equations on Riemannian Manifolds with the Sobolev Critical Exponent. Topics in Geometry, , Progr. Nonlinear Differential Equations Appl., 20, Birkhäuser Boston, Boston, MA, 1996.
    [6] A. Bahri and J. M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: The effect of the topology of the domain, Comm. Pure Appl. Math., 41 (1988), 253-294.  doi: 10.1002/cpa.3160410302.
    [7] A. BahriY. Li and O. Rey, On a variational problem with lack of compactness: The topological effect of the critical points at infinity, Calc. Var. Partial Differential Equations, 3 (1995), 67-93.  doi: 10.1007/BF01190892.
    [8] M. Ben AyedK. El Mehdi and M. Ould Ahmedou, Prescribing the scalar curvature under minimal boundary conditions on the half sphere, Adv. Nonlinear Stud., 2 (2002), 93-116.  doi: 10.1515/ans-2002-0201.
    [9] M. Ben AyedK. El Mehdi and M. Ould Ahmedou, The scalar curvature problem on the four dimensional half sphere, Calc. Var. Partial Differential Equations, 22 (2005), 465-482.  doi: 10.1007/s00526-004-0285-6.
    [10] M. Ben AyedR. Ghoudi and K. Ould Bouh, Existence of conformal metrics with prescribed scalar curvature on the four dimensional half sphere, NoDEA Nonlinear Differential Equations Appl., 19 (2012), 629-662.  doi: 10.1007/s00030-011-0145-y.
    [11] C.-C. Chen and C.-S. Lin, Blowing up with infinite energy of conformal metrics on $\mathbb{S}^n$, Comm. Partial Differential Equations, 24 (1999), 785-799.  doi: 10.1080/03605309908821446.
    [12] C.-C. Chen and C.-S. Lin, Prescribing the scalar curvature on $S^n$, I. A priori estimates, J. Differential Geom., 57 (2001), 67-171.  doi: 10.4310/jdg/1090348090.
    [13] C.-C. Chen and C.-S. Lin, Estimate of the conformal scalar curvature equation via the method of moving planes II, J. Differential Geom., 49 (1998), 115-178.  doi: 10.4310/jdg/1214460938.
    [14] Z. DjadliA. Malchiodi and M. Ould Ahmedou, Prescribing scalar and boundary mean curvature on the three dimensional half sphere, J. Geom. Anal., 13 (2003), 255-289.  doi: 10.1007/BF02930697.
    [15] O. Druet, E. Hebey and F. Robert, Blow-Up Theory for Elliptic PDEs in Riemannian Geometry, Mathematical Notes, 45. Princeton University Press, Princeton, NJ, 2004.
    [16] P. Esposito and J. Wei, Non-simple blow-up solutions for the Neumann two-dimensional sinh-Gordon equation, Calc. Var. Partial Differential Equations, 34 (2009), 341-375.  doi: 10.1007/s00526-008-0187-0.
    [17] M. A. KhuriF. C. Marques and R. M. Schoen, A compactness theorem for the Yamabe problem, J. Differential Geom., 81 (2009), 143-196.  doi: 10.4310/jdg/1228400630.
    [18] Y. Li, The Nirenberg problem in a domain with boundary, Top. Meth. Nonlin. Anal., 6 (1995), 309-329.  doi: 10.12775/TMNA.1995.048.
    [19] Y. Y. Li, Prescribing scalar curvature on $S^{n}$ and related topics, Part I, Journal of Differential Equations, 120 (1995), 319-410.  doi: 10.1006/jdeq.1995.1115.
    [20] Y. Li, Prescribing scalar curvature on $S^n$ and related topics, Part II : Existence and compactness, Comm. Pure Appl. Math., 49 (1996), 541-597.  doi: 10.1002/(SICI)1097-0312(199606)49:6<541::AID-CPA1>3.0.CO;2-A.
    [21] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. Part I, Rev. Mat. Iberoamericano, 1 (1985), 145-201.  doi: 10.4171/RMI/6.
    [22] A. Malchiodi and M. Mayer, Prescribing Morse scalar curvatures: Subcritical blowing-up solutions, J. Differential Equations, 268 (2020), 2089-2124.  doi: 10.1016/j.jde.2019.09.019.
    [23] A. Malchiodi and M. Mayer, Prescribing Morse scalar curvatures: Blow-up analysis, Int. Math. Res. Not. IMRN, 18 (2021), 14123-14203.  doi: 10.1093/imrn/rnaa021.
    [24] A. Pistoia and G. Vaira, Clustering phenomena for linear perturbation of the Yamabe equation, Partial Differential Equations Arising from Physics and Geometry, London Math. Soc. Lecture Note Ser., 450, Cambridge Univ. Press, Cambridge, 2019,311-331. doi: 10.1017/9781108367639.009.
    [25] R. Schoen, Topics in Differential Geometry, Graduate course at Stanford University, 1988, https://sites.math.washington.edu/~pollack/research/Schoen-1988-notes.html
    [26] R. Schoen and D. Zhang, Prescribed scalar curvature on the n-sphere, Calc. Var. Partial Differential Equations, 4 (1996), 1-25.  doi: 10.1007/BF01322307.
    [27] M. Struwe, A global compactness result for elliptic boundary value problems involving limiting nonlinearities, Math. Z., 187 (1984), 511-517.  doi: 10.1007/BF01174186.
    [28] P.-D. Thizy and J. Vétois, Positive clusters for smooth perturbations of a critical elliptic equation in dimensions four and five, J. Funct. Anal., 275 (2018), 170-195.  doi: 10.1016/j.jfa.2018.02.002.
  • 加载中
SHARE

Article Metrics

HTML views(1533) PDF downloads(81) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return