\`x^2+y_1+z_12^34\`
Article Contents
Article Contents

Viscosity dominated limit of global solutions to a hyperbolic equation in MEMS

Abstract / Introduction Related Papers Cited by
  • We study the asymptotic relation of solutions between the hyperbolic equation and the parabolic one over a one-dimensional bounded interval, both of which model a simple electrostatic micro-electro-mechanical system (MEMS) device. The relation is characterized by a limit as a physical parameter representing the strength of inertial forces tends to zero. We call this limit the viscosity dominated limit. It is shown that in this singular limit the solution of the hyperbolic model converges to that of the parabolic one globally in time. Also the higher order terms including the initial layer corrections, as well as the related error estimates, are derived. Furthermore, it is proved that the convergence is valid for global solutions with large initial data.
    Mathematics Subject Classification: Primary: 35B25, 35A01; Secondary: 35L20, 74H10.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    P. H. Chang and H. A. Levine, The quenching of solutions of semilinear hyperbolic equations, SIAM J. Math. Anal., 12 (1981), 893-903.doi: 10.1137/0512075.

    [2]

    J. Escher, P. Laurençot and C. Walker, A parabolic free boundary problem modeling electrostatic MEMS, Arch. Rat. Mech. Anal., 211 (2014), 389-417.doi: 10.1007/s00205-013-0656-2.

    [3]

    P. Esposito, N. Ghoussoub and Y. Guo, Compactness along the branch of semistable and unstable solutions for an elliptic problem with a singular nonlinearity, Comm. Pure Appl. Math., 60 (2007), 1731-1768.doi: 10.1002/cpa.20189.

    [4]

    P. Esposito, N. Ghoussoub and Y. Guo, Mathematical Analysis of Partial Differential Equations Modeling Electrostatic MEMS, Courant Lect. Notes Math. 20, Courant Institute of Mathematical Sciences, New York University, New York, 2010.

    [5]

    L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, 19, American Mathematical Society, 1998.

    [6]

    S. Filippas and J. S. Guo, Quenching profiles for one-dimensional semilinear heat equations, Quart. Appl. Math., 51 (1993), 713-729.

    [7]

    G. Flores, G. A. Mercado and J. A. Pelesko, Dynamics and Touchdown in Electrostatic MEMS, Proceedings of ICMENS, 2003, 162-187.

    [8]

    N. Ghoussoub and Y. Guo, On the partial differential equations of electrostatic MEMS devices: Stationary case, SIAM J. Math. Anal., 38 (2006/07), 1423-1449. doi: 10.1137/050647803.

    [9]

    N. Ghoussoub and Y. Guo, Estimates for the quenching time of a parabolic equation modeling electrostatic MEMS, Methods Appl. Anal., 15 (2008), 361-376.

    [10]

    N. Ghoussoub and Y. Guo, On the partial differential equations of electrostatic MEMS devices, II. Dynamic case, NoDEA Nonlinear Differential Equations Appl., 15 (2008), 115-145.doi: 10.1007/s00030-007-6004-1.

    [11]

    J. S. Guo, On the quenching behavior of the solution of a semilinear parabolic equation, J. Math. Anal. Appl., 151 (1990), 58-79.doi: 10.1016/0022-247X(90)90243-9.

    [12]

    J. S. Guo, On the quenching rate estimate, Quart. Appl. Math., 49 (1991), 747-752.

    [13]

    J. S. Guo, On a quenching problem with the Robin boundary condition, Nonlinear Anal., 17 (1991), 803-809.doi: 10.1016/0362-546X(91)90154-S.

    [14]

    J. S. Guo, Quenching problem in nonhomogeneous media, Differential Integral Equations, 10 (1997), 1065-1074.

    [15]

    J. S. Guo, B. Hu and C. Wang, A nonlocal quenching problem arising in a micro-electro mechanical system, Quart. Appl. Math., 67 (2009), 725-734.doi: 10.1090/S0033-569X-09-01159-5.

    [16]

    J. S. Guo and B. Huang, Hyperbolic quenching problem with damping in the micro-electro mechanical system device, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 419-434.doi: 10.3934/dcdsb.2014.19.419.

    [17]

    J. S. Guo and N. Kavallaris, On a nonlocal parabolic problem arising in electrostatic MEMS control, Discrete Contin. Dyn. Syst., 32 (2012), 1723-1746.doi: 10.3934/dcds.2012.32.1723.

    [18]

    Y. Guo, On the partial differential equations of electrostatic MEMS devices, III. Refined touchdown behavior, J. Differential Equations, 244 (2008), 2277-2309.doi: 10.1016/j.jde.2008.02.005.

    [19]

    Y. Guo, Dynamical solutions of singular wave equations modeling electrostatic MEMS, SIAM J. Appl. Dyn. Syst., 9 (2010), 1135-1163.doi: 10.1137/09077117X.

    [20]

    Z. M. Guo and J. Wei, Asymptotic behavior of touch-down solutions and global bifurcations for an elliptic problem with a singular nonlinearity, Commun. Pure Appl. Anal., 7 (2008), 765-786.doi: 10.3934/cpaa.2008.7.765.

    [21]

    Z. M. Guo and J. Wei, Infinitely many turning points for an elliptic problem with a singular non-linearity, J. Lond. Math. Soc., 78 (2008), 21-35.doi: 10.1112/jlms/jdm121.

    [22]

    S. Kaplan, On the growth of solutions of quasi-linear parabolic equations, Comm. Pure Appl. Math., 16 (1963), 305-330.doi: 10.1002/cpa.3160160307.

    [23]

    N. I. Kavallaris, A. A. Lacey, C. V. Nikolopoulos and D. E. Tzanetis, A hyperbolic non-local problem modelling MEMS technology, Rocky Mountain J. Math., 41 (2011), 505-534.doi: 10.1216/RMJ-2011-41-2-505.

    [24]

    H. Kawarada, On solutions of initial boundary value problem for $u_t=u_{x x}+\frac{1}{1-u}$, RIMS Kyoto U., 10 (1975), 729-736.doi: 10.2977/prims/1195191889.

    [25]

    P. Laurençot and C. Walker, A stationary free boundary problem modeling electrostatic MEMS, Arch. Rat. Mech. Anal., 207 (2013), 139-158.doi: 10.1007/s00205-012-0559-7.

    [26]

    H. A. Levine, Quenching, nonquenching, and beyond quenching for solution of some parabolic equations, Ann. Mat. Pura Appl., 155 (1989), 243-260.doi: 10.1007/BF01765943.

    [27]

    C. Liang, J. Li and K. Zhang, On a hyperbolic equation arising in electrostatic MEMS, J. Differential Equations, 256 (2014), 503-530.doi: 10.1016/j.jde.2013.09.010.

    [28]

    C. Liang and K. Zhang, Asymptotic stability and quenching behavior of a hyperbolic nonlocal MEMS equation, Commun. Math. Sci., 13 (2015), 355-368.doi: 10.4310/CMS.2015.v13.n2.a5.

    [29]

    J. A. Pelesko and A. A. Bernstein, Modeling MEMS and NEMS, Chapman and Hall, London, and CRC Press, Boca Raton, FL, 2003.

    [30]

    R. A. Smith, On a hyperbolic quenching problem in several dimensions, SIAM J. Math. Anal., 20 (1989), 1081-1094.doi: 10.1137/0520072.

    [31]

    D. Ye and F. Zhou, On a general family of nonautonomous elliptic and parabolic equations, Calc. Var. Partial Differential Equations, 37 (2010), 259-274.doi: 10.1007/s00526-009-0262-1.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(120) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return