\`x^2+y_1+z_12^34\`
Article Contents
Article Contents

Existence of at most two limit cycles for some non-autonomous differential equations

  • *Corresponding author: Yulin Zhao

    *Corresponding author: Yulin Zhao

The first author is supported by Spanish State Research Agency, through the projects PID2019-104658GB-I00 grant and the Severo Ochoa and María de Maeztu Program for Centers and Units of Excellence in R&D (CEX2020-001084-M) and by the grant 2017-SGR-1617 from AGAUR, Generalitat de Catalunya. The second author is supported by the NNSF of China (No. 11971495), Guangdong-Hong Kong-Macau Applied Math Center (No. 2020B1515310014) and Guangdong Basic and Applied Basic Research Foundation (No. 2022A1515012105)

Abstract / Introduction Full Text(HTML) Figure(1) Related Papers Cited by
  • It is know that the non-autonomous differential equations $ {\rm d}x/{\rm d} t = a(t)+b(t)|x| $, where $ a(t) $ and $ b(t) $ are 1-periodic maps of class $ \mathcal{C}^1 $, have no upper bound for their number of limit cycles (isolated solutions satisfying $ x(0) = x(1) $). We prove that if either $ a(t) $ or $ b(t) $ does not change sign, then their maximum number of limit cycles is two, taking into account their multiplicities, and that this upper bound is sharp. We also study all possible configurations of limit cycles. Our result is similar to other ones known for Abel type periodic differential equations although the proofs are quite different.

    Mathematics Subject Classification: Primary: 34C25; Secondary: 34A34, 34C07, 37C27.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  For a given differential equation (1.4), example of the values $ x_i $ and $ \tau_i. $ Also, for a particular solution $ u(t,0,x), $ with $ n = 2 $ and $ r = 4, $ we show the values $ t_1(x) $ and $ t_2(x). $ Notice that for $ x $ in each of the intervals $ J_i $ the number of zeroes of $ u(t,0,x) $ is constant. In particular, for $ x\in J_3, $ this number is $ k_3 = 2. $.

  • [1] D. M. BenardeteV. W. Noonburg and B. Pollina, Qualitative tools for studying periodic solutions and bifurcations as applied to the periodically harvested logistic equation, Amer. Math. Monthly, 115 (2008), 202-219.  doi: 10.1080/00029890.2008.11920518.
    [2] J. BravoM. Fernàndez and A. Tineo, Periodic solutions of a periodic scalar piecewise ODE, Commun. Pure Appl. Anal., 6 (2007), 213-228.  doi: 10.3934/cpaa.2007.6.213.
    [3] M. Chamberland and A. Gasull, Chini equations and isochronous centers in three-dimensional differential systems, Qual. Theory Dyn. Syst., 9 (2010), 29-38.  doi: 10.1007/s12346-010-0019-4.
    [4] B. CollA. Gasull and R. Prohens, Simple non-autonomous differential equations with many limit cycles, Commun. Appl. Nonlinear Anal., 15 (2008), 29-34. 
    [5] J. DevlinN. G. Lloyd and J. M. Pearson, Cubic systems and Abel equations, J. Differ. Equ., 147 (1998), 435-454.  doi: 10.1006/jdeq.1998.3420.
    [6] E. Fossas-Colet and J. M. Olm-Miras, Asymptotic tracking in dc-to-dc nonlinear power converters, Discret. Contin. Dyn. Syst.-Ser. B, 2 (2002), 295-307.  doi: 10.3934/dcdsb.2002.2.295.
    [7] J. D. García-SaldañaA. Gasull and H. Giacomini, Bifurcation values for a family of planar vector fields of degree five, Discret. Contin. Dyn. Syst., 35 (2015), 669-701.  doi: 10.3934/dcds.2015.35.669.
    [8] A. Gasull and A. Guillamon, Limit cycles for generalized Abel equations, Int. J. Bifur. Chaos Appl. Sci. Eng., 16 (2006), 3737-3745.  doi: 10.1142/S0218127406017130.
    [9] A. GasullJ. T. Lázaro and J. Torregrosa, Rational parameterizations approach for solving equations in some dynamical systems problems, Qual. Theory Dyn. Syst., 18 (2019), 583-602.  doi: 10.1007/s12346-018-0300-5.
    [10] A. Gasull and J. Llibre, Limit cycles for a class of Abel equations, SIAM J. Math. Anal., 21 (1990), 1235-1244.  doi: 10.1137/0521068.
    [11] A. Lins Neto, On the number of solutions of the equation $dx/dt = \sum_{j = 0}^{n}a_j(t)x^j $, $0\leq t\leq1 $ for which $ x(0) = x(1)$, Inv. Math., 59 (1980), 67-76.  doi: 10.1007/BF01390315.
    [12] N. G. Lloyd, The number of periodic solutions of the equation $ \dot{z} = z^N+p_1(t) z^{N-1}+\dots+p_N(t)$, Proc. London Math. Soc., 27 (1973), 667-700.  doi: 10.1112/plms/s3-27.4.667.
    [13] J. Mawhin, First order ordinary differential equations with several periodic solutions, Z. Angew. Math. Phys., 38 (1987), 257-265.  doi: 10.1007/BF00945410.
    [14] A. A. Panov, The number of periodic solutions of polynomial differential equations, Math. Notes, 64 (1998), 622-628.  doi: 10.1007/BF02316287.
    [15] L. M. Perko, Rotated vector fields and the global behavior of limit cycles for a class of quadratic systems in the plane, J. Differ. Equ., 18 (1975), 63-86.  doi: 10.1016/0022-0396(75)90081-9.
    [16] V. A. PlissNon Local Problems of the Theory of Oscillations, Academic Press, New York, 1966. 
    [17] B. Sturmfels, Solving systems of polynomial equations, vol. 97 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC, by the American Mathematical Society, Providence, RI, 2002. doi: 10.1090/cbms/097.
  • 加载中

Figures(1)

SHARE

Article Metrics

HTML views(2214) PDF downloads(184) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return