\`x^2+y_1+z_12^34\`
Article Contents
Article Contents

Tumor Treating Fields: Modeling and a numerical algorithm

  • *Corresponding author: Catharine W. K. Lo, Chunxiao Chen and Ming Lu

    *Corresponding author: Catharine W. K. Lo, Chunxiao Chen and Ming Lu 

This work is supported by National Natural Science Foundation of China (Grant No. 12071215)

Abstract / Introduction Full Text(HTML) Figure(15) / Table(5) Related Papers Cited by
  • This paper investigates the optimal control problem generated in Tumor Treating Fields (TTFields). TTFields is an emerging cancer treatment method with several advantages including the convenience of treatment, fewer side effects, and a better quality of life for patients. Therefore, it holds significant promise for applications in cancer treatments and other fields. In view of such an immense potential, in this work, we are motivated to determine the optimal arrangement of electrodes for TTFields. The paper begins by presenting a comprehensive modeling process for TTFields, followed by the establishment of an optimal control problem that involves finding the optimal configuration of the electrode array. To solve this problem, the particle swarm optimization (PSO) algorithm, which is a type of intelligent algorithm, is employed, and is further improved on to address various situations. Finally, the model is validated and the effectiveness of the PSO algorithm is verified through numerical examples.

    Mathematics Subject Classification: 35R30, 78-10, 78M10, 90C59.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The NovoTTF-100A System components and assembly

    Figure 2.  Electric field strength, (a) the resolution of model (5) with FEMs, (b) COMSOL simulation

    Figure 3.  The relationship between $ \omega $ and iteration number, (a) one pair of electrodes, (b) two pairs of electrodes

    Figure 4.  Disk

    Figure 5.  Particle aggregation (left) and solutions (right) for PSO

    Figure 6.  Particle aggregation (left) and solutions (right) for MPSO

    Figure 7.  Particle aggregation of PSO with coordinate transformation for two pairs of electrodes (left) and three pairs of electrodes (right)

    Figure 8.  Particle aggregation using coordinate transformation PSO algorithm with segmented weights for two pairs of electrodes (left) and three pairs of electrodes (right)

    Figure 9.  Sphere

    Figure 10.  IPSO in 3D, (a) Particle motion graph in two pairs of electrodes, (b) solution in two pairs of electrodes

    Figure 11.  MPSO in 3D, (a) particle motion graph in two pairs of electrodes, (b) solutions in three pairs of electrodes

    Figure 12.  CPSO in 3D, (a) (b) particle motion graph and solution in two pairs of electrodes, (c) (d) particle motion graph and solution in three pairs of electrodes

    Figure 13.  Brain and internal tumor

    Figure 14.  The process of the candidate solution to the relatively good solution, in the case of one pair of electrodes, (a) electrode distribution at $ k = 0 $, (b) electrode distribution at $ k = 200 $, (c) electrode distribution at $ k = 250 $, in the case of two pairs of electrodes, (d) electrode distribution at $ k = 0 $, (e) electrode distribution at $ k = 200 $, (f) electrode distribution at $ k = 250 $

    Figure 15.  Electrode array layouts and the electric field intensity of the tumor, (a) AP array layout, (b) LR array layout, (c) array layout obtained from PSO, (d) (c) array layout obtained from CPSO

    Table 1.  The physical parameters for different tissues [37]

    Tissue Conductivity, $ \sigma(S/m) $ Permittivity, $ \epsilon_r(F/m) $
    Scalp 0.2500 5000
    Skull 0.0211 204
    Gray matter 0.1410 2010
    White matter 0.0868 1290
    Tumor 0.2500 110
    Cerebrospinal fluid 2 109
    Gel 0.1000 100
    Electrodes 0 6000
     | Show Table
    DownLoad: CSV

    Table 2.  The mean $ E $ and $ \phi $ over tumor area

    Numerical solutions with model (5) Simulation solution
    $ \phi(V) $ 395.4736 400.0800
    $ E(V/cm) $ 1.8814 1.8595
     | Show Table
    DownLoad: CSV

    Table 3.  The electrical conductivity and permittivity of each tissue

    Tissue Conductivity, $ \sigma(S/m) $ Permittivity, $ \epsilon_r(F/m) $
    Scalp 0.2500 5000
    Skull 0.0211 204
    Tumor 0.2500 110
    Others 0.1589 1638
     | Show Table
    DownLoad: CSV

    Table 4.  The iterative process of particles $ x $ in the case of one and two pairs of electrodes

    Iterations One pair of electrodes Two pairs of electrodes
    $ k = 0 $ [3608; 5367] [5812; 8195; 8545; 10549]
    $ k = 200 $ [4525; 7662] [4395; 5367; 10544; 10549]
    $ k = 250 $ [7718; 7485] [6653; 6736; 10432; 10785]
     | Show Table
    DownLoad: CSV

    Table 5.  The mean and minimum electric field intensity in tumor area of four different strategies for electrode array layout

    Strategy for electrode array layout $ \overline{E} $(V/cm) $ E_{min} $(V/cm)
    AP 1.0565 0.8826
    LR 1.0768 0.7843
    PSO 1.4342 1.1210
    CPSO 1.5010 1.1454
     | Show Table
    DownLoad: CSV
  • [1] E. D. Kirson, Z. Gurvich, R. Schneiderman, et al., Disruption of cancer cell replication by alternating electric fields, Cancer. Res., 64 (2004), 3288-3295.
    [2] P. Peruzzi and E. A. Chiocca, Treating glioblastoma multiforme with electrical fields, World. Neurosurg., 74 (2010), 208-211. 
    [3] P. H. Gutin and E. T. Wong, Noninvasive application of alternating electric fields in glioblastoma: A fourth cancer treatment modality, Am. Soc. Clin. Oncol. Educ. Book., 32 (2012), 126-131. 
    [4] S. Mohan, S. Chawla, S. Wang, et al., Assessment of early response to tumor-treating fields in newly diagnosed glioblastoma using physiologic and metabolic MRI: Initial experience, CNS. Oncol., 5 (2016), 137-144.
    [5] J. BranterS. Basu and S. Smith, Tumour treating fields in a combinational therapeutic approach, Oncotarget., 9 (2018), 36631-36644. 
    [6] A. Chaudhry, L. Benson, M. Varshaver, et al., NovoTTFields-100A system (Tumor Treating Fields) transducer array layout planning for glioblastoma: A novoTAL system user study, World J. Surg. Oncol., 13 (2015), 316.
    [7] P. C. Miranda, A. Mekonnen, R. Salvador, et al., Predicting the electric field distribution in the brain for the treatment of glioblastoma, Phys. Med. Biol., 59 (2014), 4137-4147.
    [8] N. Gera, A. Yang, T. S. Holtzman, et al., Tumor treating fields perturb the localization of septins and cause aberrant mitotic exit, PLoS One., 10 (2015), e0125269.
    [9] P. A. Clark, J. T. Gaal, J. K. Strebe, et al., The effects of tumor treating fields and temozolomide in MGMT expressing and non-expressing patient-derived glioblastoma cells, J. Clin. Neurosci., 36 (2017), 120-124.
    [10] S. Mittal, N. V. Klinger, S. K. Michelhaugh, et al., Alternating electric tumor treating fields for treatment of glioblastoma: Rationale, preclinical, and clinical studies, J. Neurosurg., 128 (2018), 414-421.
    [11] S. Kesari and Z. Ram, Tumor-treating fields plus chemotherapy versus chemotherapy alone for glioblastoma at first recurrence: A post hoc analysis of the EF-14 trial, CNS. Oncol., 6 (2017), 185-193. 
    [12] R. V. Lukas, K. L. Ratermann, E. T. Wong, et al., Skin toxicities associated with tumor treating fields: case based review, Journal of Neuro-Oncology, J. Neurooncol., 135 (2017), 593-599.
    [13] W. Shi, D. T. Blumenthal, N. A. Oberheim Bush, et al., Global post-marketing safety surveillance of Tumor Treating Fields (TTFields) in patients with high-grade glioma in clinical practice, J. Neurooncol., 148 (2020), 489-500.
    [14] M. E. Lacouture, M. J. Anadkat, M. T. Ballo, et al., Prevention and management of dermatologic adverse events associated with tumor treating fields in patients with glioblastoma, Front. Oncol., 10 (2020), 1045.
    [15] N. T. N Gatson, J. Barnholtz-Sloan, J. Drappatz, et al., Tumor treating fields for glioblastoma therapy during the COVID-19 pandemic, Front. Oncol., 11 (2021), 679702.
    [16] M. Mehta, P. Wen, R. Nishikawa, et al., Critical review of the addition of tumor treating fields (TTFields) to the existing standard of care for newly diagnosed glioblastoma patients, Crit. Rev. Oncol. Hematol., 111 (2017), 60-65.
    [17] A. M. DaviesU. Weinberg and Y. Palti, Tumor treating fields: A new frontier in cancer therapy, Ann. N. Y. Acad. Sci., 1291 (2013), 86-95. 
    [18] E. T. WongE. Lok and K. D. Swanson, An evidence-based review of alternating electric fields therapy for malignant gliomas, Curr. Treat. Options. Oncol., 16 (2015), 40. 
    [19] E. LokK. D. Swanson and E. T. Wong, Tumor treating fields therapy device for glioblastoma: Physics and clinical practice considerations, Expert. Rev. Med. Devices., 12 (2015), 717-726. 
    [20] T. Voloshin, M. Munster, R. Blatt, et al., Alternating electric fields (TTFields) in combination with paclitaxel are therapeutically effective against ovarian cancer cells in vitro and in vivo, Int. J. Cancer., 139 (2016), 2850-2858.
    [21] Y. J. Lee, J. M. Cho, S. Sai, et al., 5-Fluorouracil as a tumor-treating field-sensitizer in colon cancer therapy, Cancers., 11 (2019), 1999.
    [22] A. R. Farmani, F. Mahdavinezhad, C. Scagnolari, et al., An overview on tumor treating fields (TTField) technology as a new potential subsidiary biophysical treatment for COVID-19, Drug Deliv. Transl. Res., 12 (2022), 1605-1615.
    [23] M. Giladi, R. S. Schneiderman, Y. Porat, et al., Mitotic disruption and reduced clonogenicity of pancreatic cancer cells in vitro and in vivo by tumor treating fields, Pancreatology., 14 (2014), 54-63.
    [24] E. Chang, C. Pohling, N. Beygui, et al., Synergistic inhibition of glioma cell proliferation by Withaferin A and tumor treating fields, J. Neurooncol., 134 (2017), 259-268.
    [25] M. Giladi, M. Munster, R. S. Schneiderman, et al., Tumor treating fields (TTFields) delay DNA damage repair following radiation treatment of glioma cells, Radiation. Oncology., 12 (2017), 206.
    [26] P. A. Clark, J. T. Gaal, J. K. Strebe, et al., The effects of tumor treating fields and temozolomide in MGMT expressing and non-expressing patient-derived glioblastoma cells, J. Clin. Neurosci., 36 (2017), 120-124.
    [27] S. Kesari and Z. Ram, Tumor-treating fields plus chemotherapy versus chemotherapy alone for glioblastoma at first recurrence: A post hoc analysis of the EF-14 trial, CNS. Oncol., 6 (2017), 185-193. 
    [28] J. Y. Kim, Y. Jo, H. K Oh, et al., Sorafenib increases tumor treating fields-induced cell death in glioblastoma by inhibiting STAT3, Am. J. Cancer Res., 10 (2020), 3475-3486.
    [29] H. S. Hershkovich, N. Urman, O. Yesharim, et al., The dielectric properties of skin and their influence on the delivery of tumor treating fields to the torso: A study combining in vivo measurements with numerical simulations, Phys. Med. Biol., 64 (2019), 185014.
    [30] A. R. Korshoej, F. L. Hansen, N. Mikic et al., Importance of electrode position for the distribution of tumor treating fields (TTFields) in a human brain. Identification of effective layouts through systematic analysis of array positions for multiple tumor locations, PLoS One., 13 (2018), e0201957.
    [31] C. Wenger, R. Salvador, P. J. Basser, et al., Improving tumor treating fields treatment efficacy in patients with glioblastoma using personalized array layouts, Int. J. Radiat. Oncol. Biol. Phys., 94 (2016), 1137-1143.
    [32] E. Lok, P. San, V. Hua, et al., Analysis of physical characteristics of tumor treating fields for human glioblastoma, Cancer Medicine., 6 (2017), 1286-1300.
    [33] X. LiF. Yang and B. Rubinsky, A theoretical study on the biophysical mechanisms by which tumor treating fields affect tumor cells during mitosis, IEEE. Trans. Biomed. Eng., 67 (2020), 2594-2602. 
    [34] A. R. Korshoej, F. L. Hansen, A. Thielscher, et al., Impact of tumor position, conductivity distribution and tissue homogeneity on the distribution of tumor treating fields in a human brain: A computer modeling study, PLoS One., 12 (2017), e0179214.
    [35] W. HanW. Cong and G. Wang, Mathematical theory and numerical analysis of bioluminescence tomography, Inverse Probl., 22 (2006), 1659-1675. 
    [36] W. HanW. Cong and G. Wang, Mathematical study and numerical simulation of multispectral bioluminescence tomography, Int. J. Biomed. Imaging., 2006 (2006), 54390. 
    [37] C. Gabriel, Compilation of the dielectric properties of body tissues at RF and microwave frequencies, King's Coll London (United Kingdom) Dept of Physics, 1996.
    [38] J. Kennedy and R. Eberhart, Particle swarm optimization, Proceedings of ICNN'95-International Conference on Neural Networks, Perth, Australia, (1995), 1942-1948.
    [39] J. Kennedy and R. Eberhart, Mean particle swarm optimisation for function optimisation, Int. J. Comput., 1 (2009), 72-92. 
  • 加载中

Figures(15)

Tables(5)

SHARE

Article Metrics

HTML views(457) PDF downloads(116) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return