Skip to content
BY-NC-ND 4.0 license Open Access Published by De Gruyter Open Access July 20, 2018

Global dynamics and parameter identifiability in a predator-prey interaction model

  • Jai Prakash Tripathi , Suraj S. Meghwani , Swati Tyagi and Syed Abbas EMAIL logo

Abstract

This paper discusses a predator-prey model with prey refuge. We investigate the role of prey refuge on the existence and stability of the positive equilibrium. The global asymptotic stability of positive interior equilibrium solution is established using suitable Lyapunov functional, which shows that the prey refuge has no influence on the permanence property of the system. Mathematically, we analyze the effect of increase or decrease of prey reserve on the equilibrium states of prey and predator species. To access the usability of proposed predator-prey model in practical scenarios, we also suggest, the use of Levenberg-Marquardt (LM) method for associated parameter estimation problem. Numerical results demonstrate faithful reconstruction of system dynamics by estimated parameter by LM method. The analytical results found in this paper are illustrated with the help of suitable numerical examples

References

[1] J. Smith, Models in ecology, Cambridge University Press, Cambridge, 1974.Search in Google Scholar

[2] J.N. McNair, Stability effects of prey refuges with entry-exit dynamics, J. Theor. Biol. 125 (1987), 449-464.10.1016/S0022-5193(87)80213-8Search in Google Scholar

[3] J.P. Tripathi, S. Abbas, M. Thakur, Dynamical analysis of a prey-predator model with Beddington-DeAngelis type function response incorporating a prey refuge, Nonlinear Dyn. 80 (2015), 177-196.10.1007/s11071-014-1859-2Search in Google Scholar

[4] A. Sih, Prey refuges and predator-prey stability, Theor. Pop. Biol. 31 (1987), 1-12.10.1016/0040-5809(87)90019-0Search in Google Scholar

[5] M. Verma, A.K. Misra, Modeling the Effect of Prey Refuge on a Ratio-Dependent Predator-Prey System with the Allee effect, Bull. Math Biol. (2018), 1-31.10.1007/s11538-018-0394-6Search in Google Scholar

[6] J.B. Collings, Bifurcation and stability analysis of a temperature-dependent mite predator-prey interaction model incorporating prey refuge, Bull. Math. Biol. 50 (1995), 379-409.Search in Google Scholar

[7] E.G. Olivers, R.R. Jiliberto, Dynamic consequences of prey refuges in a simple model system: more prey, fewer predators and enhances stability, Ecol. Model. 166 (2003), 135-146.10.1016/S0304-3800(03)00131-5Search in Google Scholar

[8] T.K. Kar, Stability analysis of a predator-prey model incorporating a prey refuge, Commun. Nonlin. Sci. Numer. Simulat. 10 (2005), 681-691.10.1016/j.cnsns.2003.08.006Search in Google Scholar

[9] J.P. Tripathi, S. Abbas, M. Thakur, A density dependent delayed predator-prey model with Beddington-DeAngelis type Function Response incorporating a prey refuge, Commun. Nonlin. Sci. Numer. Simulat. 22 (2015), 427-450.10.1016/j.cnsns.2014.08.018Search in Google Scholar

[10] J.P. Tripathi, S.S. Meghwani, M. Thakur, S. Abbas, A modified Leslie-Gower predator-prey interaction model and parameter identifiability, Commun. Nonlinear Sci. Numer. Simulat. 54 (2018), 331-346.10.1016/j.cnsns.2017.06.005Search in Google Scholar

[11] W. Ko, K. Ryu, Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a prey refuge, J. Differential Equations, 231 (2006). 534-550.10.1016/j.jde.2006.08.001Search in Google Scholar

[12] L. Ji C.Wu, Qualitative analysis of a predator-prey model with constant-rate prey harvesting incorporating prey refuge, Nonlinear Analysis.: RWA. 11 (2010), 2285-2295.10.1016/j.nonrwa.2009.07.003Search in Google Scholar

[13] Z. Ma, S. Wang, W. Li, Z. Li, The effect of prey refuge in a patchy predator-prey system, Math. Biosci. 243 (2013), 126-230.10.1016/j.mbs.2013.02.011Search in Google Scholar

[14] F. Chen, L. Chen, X. Xie, On a Leslie-Gower predator-prey model incorporating a prey refuge, Nonlinear Analysis.: RWA, 10 (2009), 2905-2908.10.1016/j.nonrwa.2008.09.009Search in Google Scholar

[15] W. Hirsch, H. Hanisch, J. Gabriel, Differential equation models of some parasitic infection: methods for the study of asymptotic behaviour, Commun. Pure Appl. Math. 38 (1985), 733-753.10.1002/cpa.3160380607Search in Google Scholar

[16] H.L. Smith, An introduction to delay differential equations with applications to the life sciences, Springer, New York, 2011.10.1007/978-1-4419-7646-8Search in Google Scholar

[17] S. Ahmad, M.R.M. Rao, Theory of ordinary differential equations with applications in biology and Engineering, Afiliated East- West Press Private Limited, New Delhi, 1999.Search in Google Scholar

[18] S. Abbas, M. Banerjee, N. Hungerbuhler, Existence, uniqueness and stability analysis of allelopathic stimulatory phytoplankton model, J. Math. Anal. Appl. 367 (2010), 249-259.10.1016/j.jmaa.2010.01.024Search in Google Scholar

[19] J.P. Tripathi, S. Abbas, M. Thakur, Local and global stability analysis of two prey one predator model with help, Commun. Nonlin. Sci. Simulat. 19 (2014), 3284-3297.10.1016/j.cnsns.2014.02.003Search in Google Scholar

[20] R.D. Parshad, A. Basheer, D. Jana, J.P. Tripathi, Do prey handling predators really matter: Subtle effects of a Crowley-Martin functional response, Chaos, Solitons & Fractals, 103 (2017), 410-421.10.1016/j.chaos.2017.06.027Search in Google Scholar

[21] M.A. Aziz-Alaoui, M.D. Okiye, Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type II schemes, Appl. Math. Lett. 16 (2003), 1069-1075.10.1016/S0893-9659(03)90096-6Search in Google Scholar

[22] R. Yafia, F. El. Adnani, H.T. Alaoui, Stability of limit cycle in a predator-prey model with modified Leslie-Gower and Hollingtype II schemes with time delay. Appl. Math. Sci, 1(3) (2007), 119-131.Search in Google Scholar

[23] J.P. Tripathi, S. Tyagi, S. Abbas, Global analysis of a delayed density dependent predator-prey model with Crowley-Martin functional response, Commun. Nonlin. Sci. Simulat. 30 (2016), 45-69.10.1016/j.cnsns.2015.06.008Search in Google Scholar

[24] R.P. Gupta, P. Chandra, Bifurcation analysis of modified Leslie-Gower predator-prey model with Michaelis-Menten type prey harvesting, J. Math. Anal. Appl. 398 (2013), 278-295.10.1016/j.jmaa.2012.08.057Search in Google Scholar

[25] M. Ashyraliyev, Y. Fomekong-Nanfack, J.A. Kaandorp, J.G. Blom, Systems biology: parameter estimation for biochemical models, Febs Journal, 276(4) (2009), 886-902.10.1111/j.1742-4658.2008.06844.xSearch in Google Scholar

[26] G. Lillacci, M. Khammash, Parameter estimation and model selection in computational biology, PLoS Comput Biol. 6(3) (2010), e1000696.10.1371/journal.pcbi.1000696Search in Google Scholar

[27] J.M. Walmag, E.J. Delhez, A trust-region method applied to parameter identification of a simple prey-predator model, Appl. Math. Model. 29(3) (2005), 289-307.10.1016/j.apm.2004.09.005Search in Google Scholar

[28] L.M. Lawson, Y.H. Spitz, E.E. Hofmann, R.B. Long, A data assimilation technique applied to a predator-prey model, B. Math. Biol. 57(4) (1995), 593-617.10.1007/BF02460785Search in Google Scholar

[29] J.J. More, The Levenberg-Marquardt algorithm : implementation and theory, Numerical analysis, Springer Berlin Heidelberg, (1978) 105-116.Search in Google Scholar

[30] M.K. Transtrum, J.P. Sethna, Improvements to the Levenberg-Marquardt algorithm for nonlinear least-squares minimization, arXiv preprint arXiv:1201.5885 (2012).Search in Google Scholar

[31] J. Pujol, The solution of nonlinear inverse problems and the Levenberg-Marquardt method, Geophysics, 72(4) (2007), W1-W16.10.1190/1.2732552Search in Google Scholar

[32] K. Madsen, H.B. Nielsen, O. Tingleff, Methods for non-linear least squares problems, Informatics and Mathematical Modelling, Technical University of Denmark, DTU, (1999).Search in Google Scholar

[33] P. Mendes D. Kell, Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation, Bioinformatics, 14(10) (1998), 869-883.10.1093/bioinformatics/14.10.869Search in Google Scholar

[34] J.S.R. Jang, E. Mizutani, Levenberg-Marquardt method for ANFIS learning, Fuzzy Information Processing Society, 1996 NAFIPS., Biennial Conference of the North American, IEEE, (1996) 87-91.Search in Google Scholar

[35] H.K. Cigizoglu, M. Alp, Generalized regression neural network in modelling river sediment yield, Adv. Eng. Softw. 37(2) (2006), 63-68.10.1016/j.advengsoft.2005.05.002Search in Google Scholar

[36] H.M. Park, T.Y. Yoon, Solution of the inverse radiation problem using a conjugate gradient method, Int. J. Heat Mass Tran. 43(10) (2000), 1767-1776.10.1016/S0017-9310(99)00255-0Search in Google Scholar

[37] M. Thakur, K. Deep, Data Assimilation of a Biological Model Using Genetic Algorithms, In Applications and Innovations in Intelligent Systems XIV, Springer London, (2007), 238-242.10.1007/978-1-84628-666-7_20Search in Google Scholar

[38] J.H. Kim, Z.W. Geem, E.S. Kim, Parameter estimation of the nonlinear Muskingum model using harmony search, 37 (2001), 1131-1138.Search in Google Scholar

[39] D. Kusum, M. Thakur, A new mutation operator for real coded genetic algorithms, Appl. Math. Comput. 193 (2007), 211-23010.1016/j.amc.2007.03.046Search in Google Scholar

[40] M. Schwaab, E.C.Jr. Biscaia, J.L. Monteiro, J.C. Pinto, Nonlinear parameter estimation through particle swarm optimization, Chem. Eng. Sci. 63(6) (2008), 1542-1552.10.1016/j.ces.2007.11.024Search in Google Scholar

[41] M. Thakur, S.S. Meghwani, H. Jalota, A modified real coded genetic algorithm for constrained optimization, Appl. Math. Comput. 235 (2014), 292-317.Search in Google Scholar

Received: 2017-02-26
Accepted: 2018-07-01
Published Online: 2018-07-20

© 2018 Syed Abbas, published by De Gruyter

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Downloaded on 26.10.2024 from https://www.degruyter.com/document/doi/10.1515/msds-2018-0009/html
Scroll to top button